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MEASURING IDEOLOGY

Can we measure ideology with web tracking data?

Direct observations of online behaviours using tracking
solutions, or meters.

'

Group of tracking technologies (plug-ins, apps,
proxies, etc)

’

Installed on participants devices

!

Collect traces left by participants when interacting with
their devices online: URLSs, apps visited, content that
they saw...




MEASURING IDEOLOGY

Web tracking data: a new source to measure ideology?

Web tracking data can be used to obtain “objective” measures of participants’ media diets
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Abstract Surveys are a vital ol for understanding public opinion
and knowledge, but they can also yield biased estimates ol behavior.
Here we explore a popular and important behavior that is frequently
measured in public opinion surveys: news consumption. Previous stud-
ies have shown that television news consumption is consistently over-
reported in surveys relative Lo passively collected behavioral data. We
validate these earlier findings, showing that they continue o hold de-
spite large shifts in news consumption habits over time, while also add-
ing some new nuance regarding question wording. We exiend these
findings o survey reports of online and social media news consump-
ton, with respect 1o both levels and trends. Third, we demonstrate the
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MEASURING IDEOLOGY

From observed media diets to ideology

We can assume that individuals prefer to read media outlets that they perceive to be “close” to
them in the (latent) left-right dimension

Ideological split among Spaniards on main source
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https://www.surveymonkey.com/curiosity/cable-news-partisanship-drives-trust/
https://www.pewresearch.org/global/fact-sheet/news-media-and-political-attitudes-in-spain/
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MEASURING IDEOLOGY web

Why would we want to measure ideology with web tracking data? g?ats

. Supplement (online) behavioural data with attitudinal information without the need of self-
reports (not always feasible)

. Measure media outlet’s ideology at a scale without relying on content analysis

. Even if of lower quality than self-reports (my expectation), combining self-reports and web-
tracking data could improve our understanding of the errors of self-reports, and the overall
quality of the estimates we use

« Understand and quantify potential errors of self-reports: problems in the centre and the
extremes

* Create a new, hopefully, better measure of ideology
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THIS STUDY

TRI-POL: the triangle of polarization

« Three wave survey combined with web
tracking data at the individual level (both Data in Brief

PC and mobile data) ; ¢ BN Available online 9 May 2023, 109219
— In Press, Journal Pre-proof  (7) What's this? 2

* Netquest metered panels Data Artce
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THIS STUDY

Case study for this presentation: Spain

Perception of the party's placement according to respondent's ideology

The left-right dimension is very
relevant in Spain

Ciudadanos Podemos PP

Spain has a highly partisan,
pluralist media system

0
9
8
7
6
5
4
3
2
1

1234567382910

And a polarized multiparty system

O

PODEMOS
e

12345678910 123456738910
Party's placement perception

https://blogs.Ise.ac.uk/eurocrisispress/2020/06/26/polarization-coronavirus/

Ideological scale

10 - Extreme
nght

=
)
=
@
Q
o
a
u
[
»
=2
9o
@)
L7
2
o
7=
@
o
c
o
a
wn
@
o

1 - Extreme
left

= N WP OOND®O®O



https://blogs.lse.ac.uk/eurocrisispress/2020/06/26/polarization-coronavirus/

ESTIMATING IDEOLOGY WITH WEB TRACKING
DATA



CREATING THE SCALE

The underlying model

An individual’s (7) decision to read a specific media outlet (j) is a function of:
1. The ideological distance between them and the outlet (d,).

2. Plus some user- and media- random effects (q; an f5), to account for differences in political interest
and popularity of media.

Pr(Yi; = 1|, Bj, dij) = Logit(a; + B — dij)




CREATING THE SCALE

The underlying model

web
data

OPpp

This approach has already been used to measure the ideology and socioeconomic status of individuals based

on what accounts they follow on Twitter
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Abstract

We estimated ideological preferences of 3.8 million Twitter users and, using a data set of nearly 150 million tweets
concerning 12 political and nonpolitical issues, explored whether online communication resembles an “echo chamber”
(as a result of selective exposure and ideological segregation) or a “national conversation,” We observed that information
was exchanged primarily among individuals with similar ideological preferences in the case of political issues (e.g.,
2012 presidential election, 2013 government shutdown) but not many other current events (e.g., 2013 Boston Marathon
bombing, 2014 Super Bowl). Discussion of the Newtown shootings in 2012 reflecied a dynamic process, beginning as
a national conversation before transforming into a polarized exchange. With respect to both political and nonpolitical
issues, liberals were more likely than conservatives to engage in cross-ideological dissemination; this is an important
asymmetry with respect to the structure of communication that is consistent with psychological theory and research
bearing on ideological differences in epistemic, existential, and relational motivation. Overall, we conclude that
previous work may have overestimated the degree of ideological segregation in social-media usage.
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Abstract

The rise of social media has opened countless opportunities to explore
social science questions with new data and methods. However, research
on socioeconomic inequality remains constrained by limited individual-
level socioeconomic status (SES) measures in digital trace data. Following
Bourdieu, we argue that the commercial and entertainment accounts
Twitter users follow reflect their economic and cultural capital. Adapting a
political science method for inferring political ideology, we use correspond-
ence analysis to estimate the SES of 3,482,652 Twitter users who follow the
accounts of 339 brands in the United States. Ve validate our estimates with
data from the Facebook Marketing application programming interface, self-
reported job titles on users’ Twitter profiles, and a small survey sample.
The results show reasonable correlations with the standard proxies for
SES, alongside much weaker or nonsignificant correlations with other demo-
graphic wvariables. The proposed method opens new opportunities for
innovative social research on inequality on Twitter and similar online
platforms.
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CREATING THE SCALE

From model to estimates: Correspondence Analysis

I adapt Pablo Barbera’s approach to measure ideology based on who users follow on Twitter,
using Correspondence Analysis

Media outlets

Participants

Dimension 2

Oultet, | Outlet, Outlet,

Correspondence Analysis

1. Compute matrix of
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VALIDATING THE SCALE

The ideology of media outlets
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The ideology of media outlets

Left space Right space

Libertad Digital

=




VALIDATING THE SCALE

Predictive validity
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Predictive validity

Political attitudes
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VALIDATING THE SCALE

Predictive validity

Voting intention Attitudes towards candidates from...

Podemos 1 |—0—| Podemos 1

!

|_._|

| | Source
~+ Suey
—+ WebTracking

02 0.0 0.2 . . . 0. 0. 0. 02 0.0 0.2
Correlation coefficient Correlation coefficient




WHAT CAN WE LEARN BY COMBINING BOTH ESTIMATES?



HIDDEN MARKOV MODEL web

Hidden Markov Models to estimate the quality of both sources g?ats

« Group of latent class models used to estimate and correct for measurement error in categorical,
longitudinal data

« Do not require any of data sources to be error-free

True score at wave 1

Self-reported
ideology at wave 1

—

Web tracking-based
ideology at wave 1




HIDDEN MARKOV MODEL

Misclassification error (5 categories)

Hidden classes

Class 1 (Far-left) Class 2 (Left) Class 3 (Centre) Class 4 (Right) Class 5 (Far-
right)

Survey
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Centre
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Web tracking
Far-left
Left
Centre
Right
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HIDDEN MARKOV MODEL

How do they compare to the latent “true” ideology?

Web tracking
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CAN WE IMPROVE THE SELF-REPORT?
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Predictive validity
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CONCLUSIONS

Take-home messages

Promising approach to combine surveys and web tracking data
It is possible to create a measure of ideology using web tracking data but far from perfect!

Although survey self-reports do seem to have more problems identifying people on the extremes
and the centre, the overall quality of the measure is very high

There might be avenues for improvement, but the results suggest that surveys do a very good job
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CAN WE IMPROVE THE SELF-REPORT?

Correspondence Analysis

Correspondence analysis considers Y, the n x m adjacency matrix indicating whether user
i (row) follows user j (column), as a representation of a set of points in a multidimensional
space. This matrix is converted into the correspondence matrix P by dividing by its grand

total, P = Y/ Zij Yij, and used to compute the matrix of standardized residuals, S, where

1/2 1/2 :
S = DY/ (P —rcT)Dcf , where r and c are the row and column masses, with r; = ) . p;j and ¢; =

Y Pij, which are then used to construct the diagonal matrices D, = diag(r) and D. = diag(c).
As described in Bonica (2013b), this step is equivalent to including the random effects a; and f3;
in the estimation. S is therefore a matrix of residuals between the observed and expected values
based on the marginal distribution of the following matrix Y; and correspondence analysis will
scale the rows and columns under the assumption that these deviations respond to the distance
between them on a latent multidimensional space.




VALIDATING THE SCALE

Self-reported and predicted ideology, by party proximity
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CAN WE IMPROVE THE SELF-REPORT?

Predictive validity

Voting intention
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