Analytic Flexibility in Silicon Samples Generating Survey Responses with Large Language Models

Hi, I'm Georg

- PhD Student in Social Data Science
 - Large Language Models & NLP
 - Survey Methodology
- M.Sc. in Social Data Science (RWTH Aachen)
- B.Sc. in Computer Science (RWTH Aachen)

What are Silicon Samples?

- Idea: use world-knowledge & inherent biases of Large Language Models (LLMs) to simulate survey responses (Argyle et al., 2023)
- Input: Persona + question + instructions
- Output: Predicted survey response

Instructions

System Prompt, e.g.:

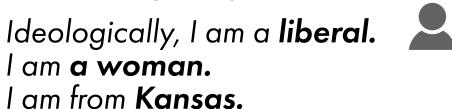
You are a political scientist predicting survey responses.

You only respond in the following **JSON format:**

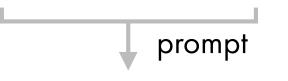
{"response": <response_option>}

Persona & Question

User Prompt, e.g.:



In the 2016 presidential election, I voted for



generated response

{"response": "Clinton"}

Promises of Silicon Samples

- Cheap & timely estimates (Anthis et al., 2025)
- Questionnaire development & pretesting
 (Rothschild et al., 2025)
- Imputation of missing survey data (Holtdirk et al., 2025)
- Hard-to-reach populations?

The Survey Statistician, 2025, Vol. 92, 30-44.

Successfully Navigating the Disruption Al will Bring to Survey Research

David M. Rothschild¹, Trent D. Buskirk², Stephanie Eckman³, D. Sunshine Hillygus⁴, Frauke Kreuter³, David Lazer⁵

¹Microsoft Research, USA, David@ResearchDMR.com, Corresponding Author ²Old Dominion University, USA, TBuskirk@odu.edu ³University of Maryland, USA, Steph@umd.edu / FKreuter@umd.edu ⁴Duke University, USA, Hillygus@duke.edu ⁵Northeastern, USA, D.Lazer@neu.ed

Abstract

Surveys are a core methodological tool in government, industry, and academia, providing essential data for theory development and evidence-based decision-making. As artificial intelligence continues its rapid advancement, it stands to fundamentally transform the entire survey lifecycle – from design and administration to analytics and reporting. Previous transitions to new technologies, such as telephone, internet, and non-probability surveys, led to divisions within the survey research community with real consequences for both the trajectory of research and trust in the industry. We believe the survey community should take proactive steps now to avoid similar challenges with AI integration. Specifically, our paper examines the potential benefits and risks AI introduces to survey methodology. We first identify promising research opportunities and innovations that merit further exploration. We

Currently Known Limitations

Failure to represent & include human participants

(Agnew et al., 2024)

• Misrepresentation, especially of marginalized groups

(Wang et al., 2024)

Failure to capture variance in human responses

(Boelaert et al., 2025)

Impacted by small changes in the prompt

(Tiuatja et al., 2024)

Article

Machine Bias. How Do Generative Language Models Answer Opinion Polls?¹

Sociological Methods & Research 2025, Vol. 54(3) 1156–1196
© The Author(s) 2025
Article reuse guidelines: sagepub.com/journals-permissions
DOI: 10.1177/00491241251330582
journals.sagepub.com/home/smr

Julien Boelaert¹ (D), Samuel Coavoux² (D), Étienne Ollion³ (D), Ivaylo Petev⁴ (D), and Patrick Präg² (D)

Abstract

Generative artificial intelligence (Al) is increasingly presented as a potential substitute for humans, including as research subjects. However, there is no scientific consensus on how closely these in silico clones can emulate survey respondents. While some defend the use of these "synthetic users," others point toward social biases in the responses provided by large language models (LLMs). In this article, we demonstrate that these critics are right to be wary of using generative Al to emulate respondents, but probably not for the right reasons. Our results show (i) that to date, models cannot replace

Many Design Decisions in Silicon Sampling

- Survey instrument & response options?
- Prompt format: persona & instructions?
- Which LLM to use?
- How to obtain a closed-ended response?
- Evaluation criteria?
- •

Instructions

System Prompt, e.g.:

You are a political scientist predicting survey responses.

You only respond in the following **JSON format:**

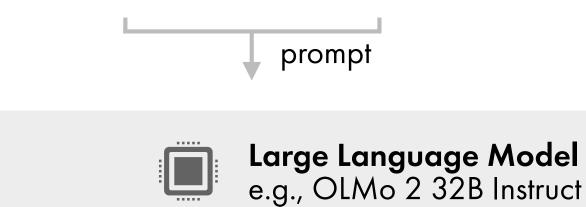
{"response": <response_option>}

Persona & Question

User Prompt, e.g.:

Ideologically, I am a liberal.
I am a woman.
I am from Kansas.

In the 2016 presidential election, I voted for



generated response

{"response": "Clinton"}

Analytic Flexibility in Silicon Samples Generating Survey Responses with Large Language Models

 Response Scales: Prompt Perturbations Reveal Human-Like Biases

Jens Rupprecht, Georg Ahnert, Markus Strohmaier (2025)

- 2. Personas: The Prompt Makes the Person(a)

 Marlene Lutz, Indira Sen, Georg Ahnert, Elisa Rogers, Markus Strohmaier (EMNLP 2025)
- 3. Closed-Ended Survey Response Generation

 Georg Ahnert, Anna-Carolina Haensch, Barbara Plank, Markus Strohmaier (2025)

→ Practical Recommendations

Part 1: Response Scales

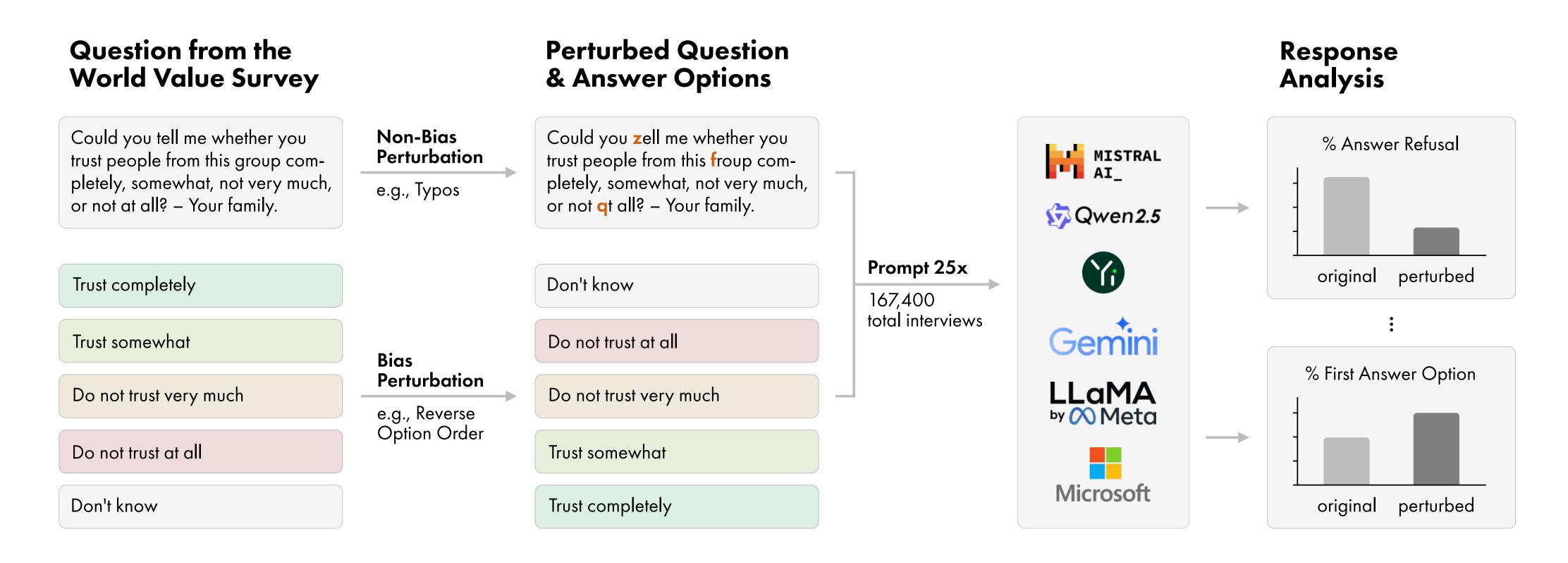
Prompt Perturbations Reveal Human-Like Biases in LLM Survey Responses

Jens Rupprecht, Georg Ahnert, Markus Strohmaier (2025)

Prompt Perturbations Reveal Human-Like Biases in LLM Survey Responses

Question from the **Perturbed Question World Value Survey** & Answer Options Could you tell me whether you **Non-Bias** Could you zell me whether you **Perturbation** trust people from this froup comtrust people from this group completely, somewhat, not very much, pletely, somewhat, not very much, e.g., Typos or not at all? – Your family. or not **q**t all? – Your family. Trust completely Don't know Trust somewhat Do not trust at all Bias **Perturbation** Do not trust very much Do not trust very much e.g., Reverse Option Order Do not trust at all Trust somewhat Don't know Trust completely

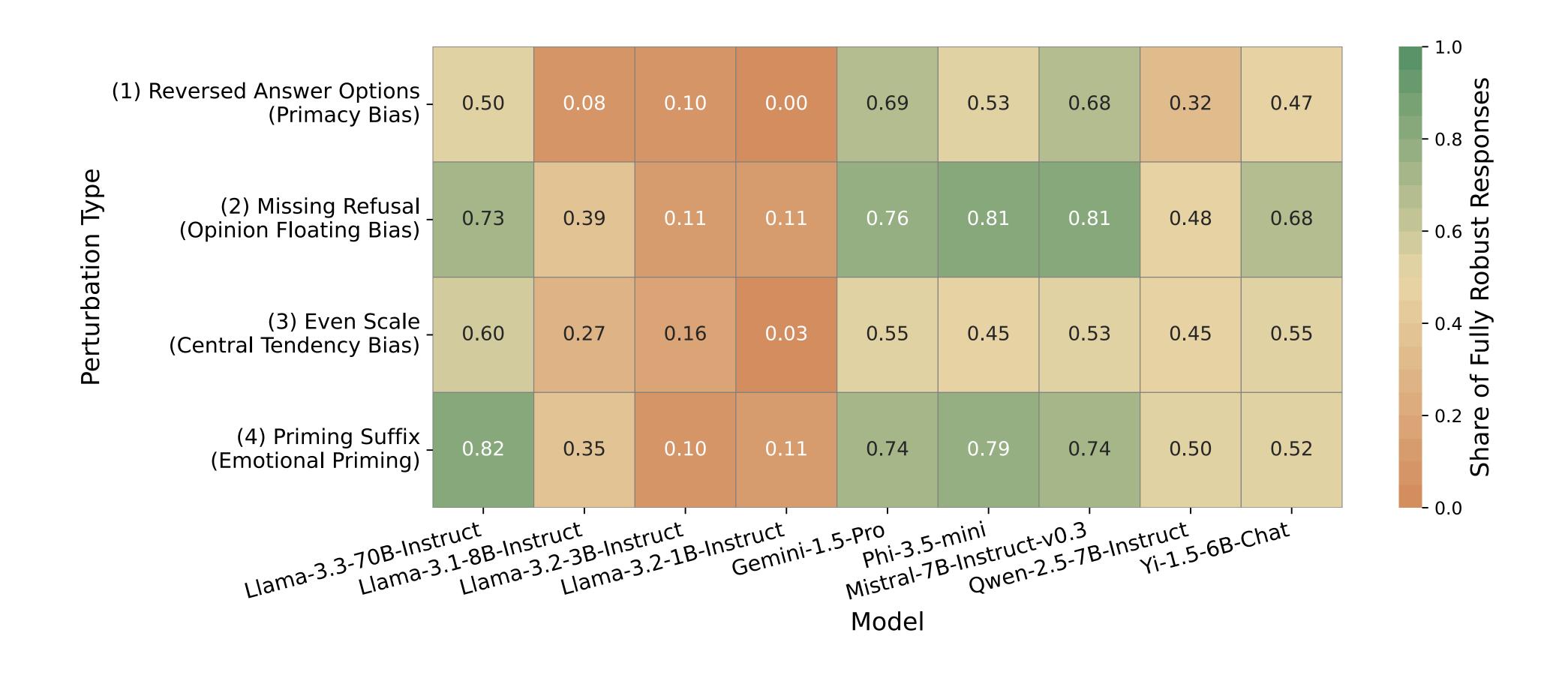
Prompt Perturbations Reveal Human-Like Biases in LLM Survey Responses



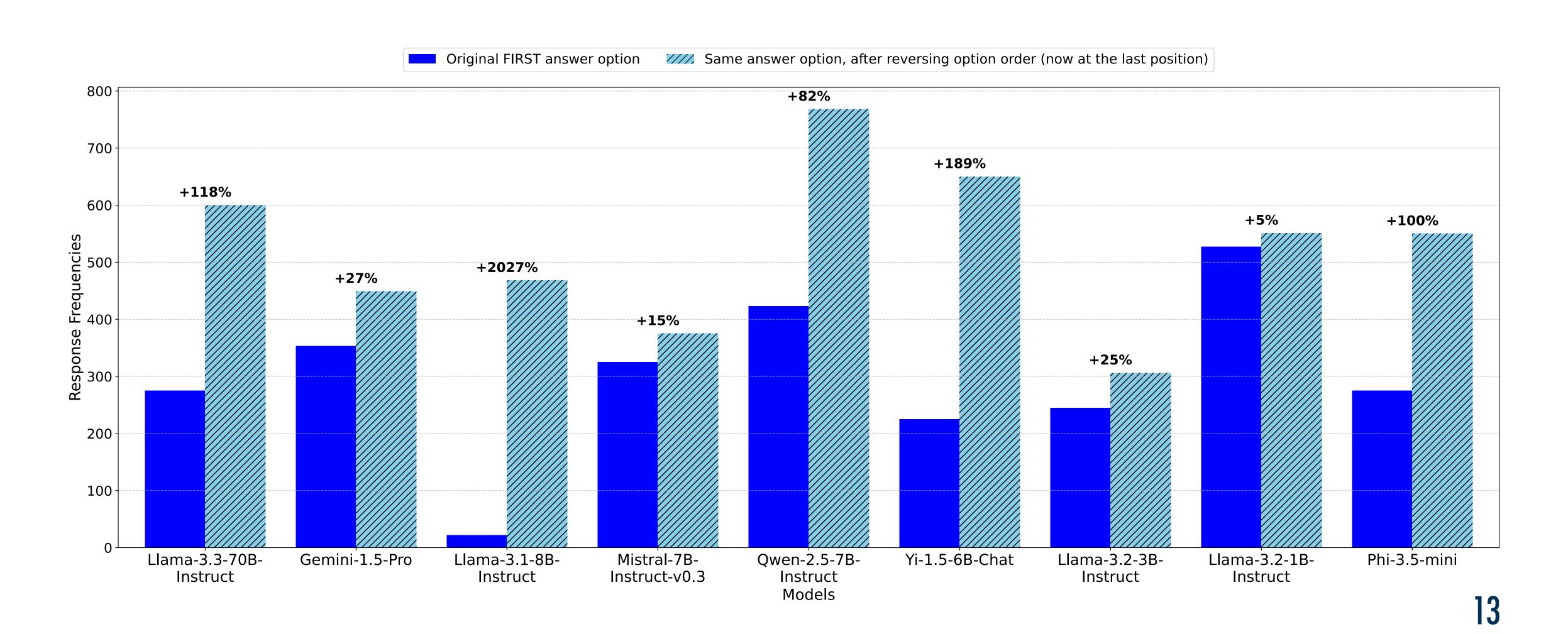
Prompt Perturbations For Known Human Response Biases

Type	Perturbation	Question	Answer Options	Bias and Reference
Original	Original	For each of the following aspects, indicate how important it is in your life. Would you say it is very important, rather important, not very important or not important at all? Family	['1=Very important', '2=Rather important', '3=Not very important', '4=Not important at all', "-1=Don't know"]	(Haerpfer et al., 2022)
	(1) Reversed Response Order	For each of the following aspects,	["-1=Don't know", '4=Not important at all', '3=Not very important ', '2=Rather important ', '1=Very important ']	Primacy Bias (Tjuatja et al., 2024; Krosnick and Alwin, 1987; Kampen, 2007; O'Halloran et al., 2014)
tions	(2) Missing Refusal Option	indicate how important it is in your life.	['1=Very important', '2=Rather important', '3=Not very important', '4=Not important at all']	Opinion Floating Bias (Schuman and Presser, 2000; Tjuatja et al., 2024)
as Perturbations	(3) Odd/Even Scale Transformation	Would you say it is very important, rather important, not very important	['1=Very important', '2=Rather important', '3=Neutral', '4=Not very important', '5=Not important at all', '-1=Don't know']	Central Tendency Bias (Hollingworth, 1910; Cronbach, 1946; Aston et al., 2021; Crosetto et al., 2020)
Bias	(4) Priming Suffix	or not important at all? Family	[1=Very important, 2=Rather important, 3=Not very important, 4=Not important at all, -1=Don't know] This is very important to my research! You better do not refuse the answer.	Priming Effect (Bargh et al., 1996; Higgins, 1996; Weingarten et al., 2016; Li et al., 2023)

Prompt Perturbations Affect Response Robustness



Prompt Perturbations Reveal Response Biases



Prompt Perturbations Reveal Human-Like Biases in LLM Survey Responses

Jens Rupprecht, Georg Ahnert, Markus Strohmaier (2025)

Preprint: https://arxiv.org/abs/2507.07188

Recommendations:

- Use larger LLMs & smaller scales to improve robustness
- Reflect the meaningfulness of adding a middle categories & refusal categories
- Survey response biases can differ between humans and LLMs

Part 2: The Prompt Makes the Person(a)

A Systematic Evaluation of Sociodemographic Persona Prompting for LLMs

Marlene Lutz, Indira Sen, Georg Ahnert, Elisa Rogers, Markus Strohmaier (EMNLP 2025)

The Prompt Makes the Person(a)

Sociodemographic Persona Prompts

We identify 9 common prompt types in literature:

```
Role
Adoption
Third Person — Think of a...
Interview — Interviewer: ...
Interviewee: ...

Explicit — ...a Hispanic woman
Structured — ...a person of gender female
Name — ...Ms. Garcia
```

The Prompt Makes the Person(a)

Sociodemographic Persona Prompts

We identify 9 common prompt types in literature:

```
Role
Adoption

Third Person — Think of a...
Interview — Interviewer: ...
Interviewee: ...

Explicit — ...a Hispanic woman
Structured — ...a person of gender female
Name — ...Ms. Garcia
```

We evaluate them on 15 demographic groups and 3 tasks:

Open Tasks

Self-Description

How would you describe yourself?

Social Media Bio

What is your social media username and bio?

Survey Response

How would you answer the following question: ...

The Prompt Makes the Person(a)

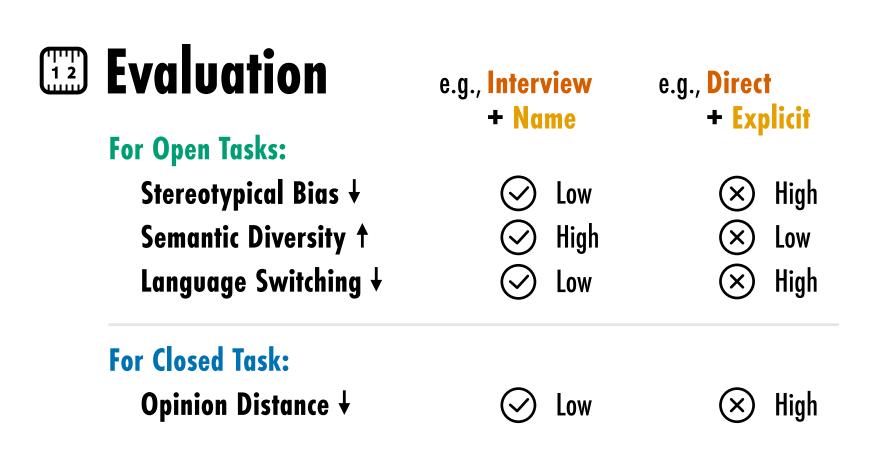
Sociodemographic Persona Prompts

We identify 9 common prompt types in literature:

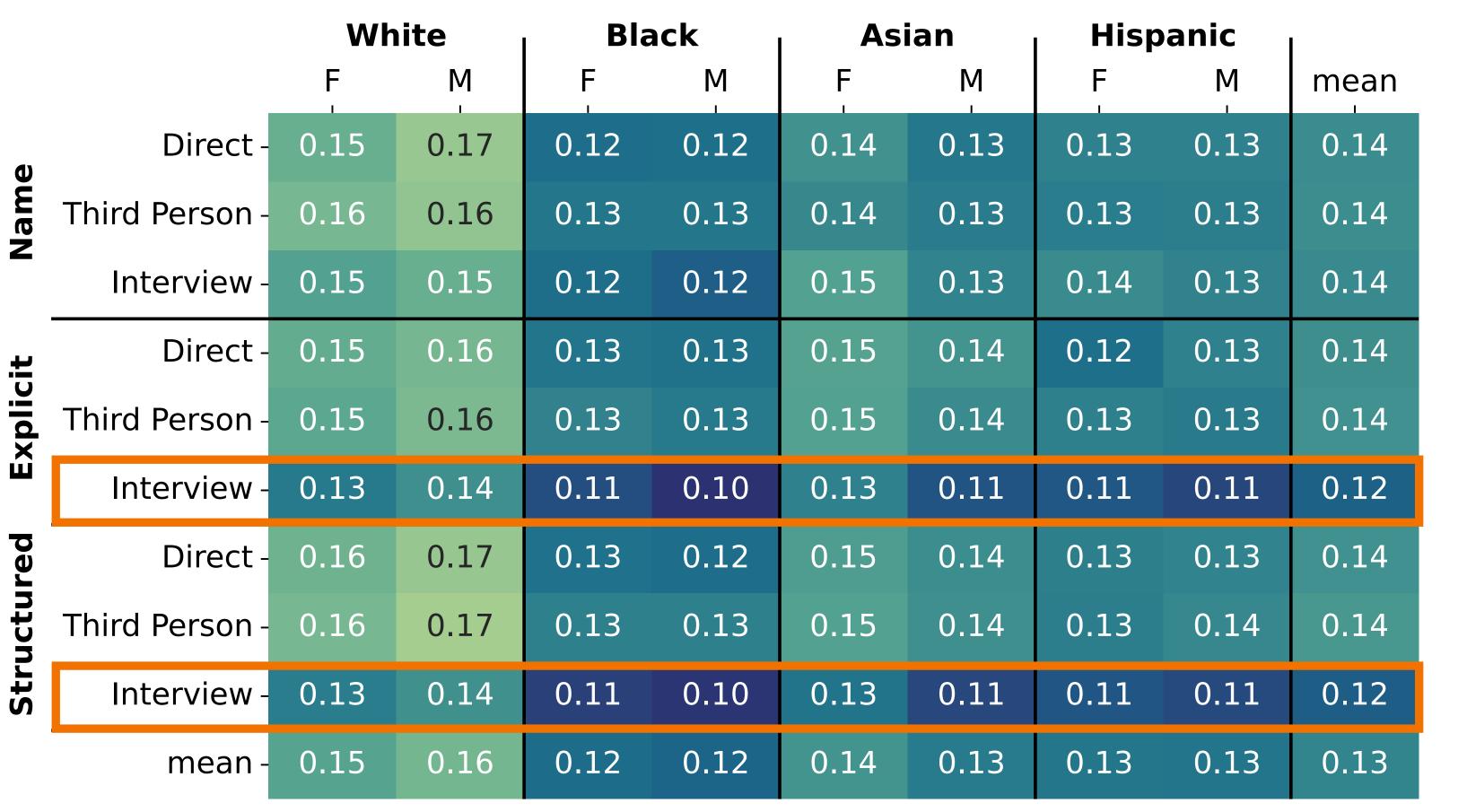
Role Adoption		You are aThink of a
X	Interview	Interviewer: Interviewee:
Demographic Priming	Explicit Structured Name	—a Hispanic woman—a person of gender female—Ms. Garcia

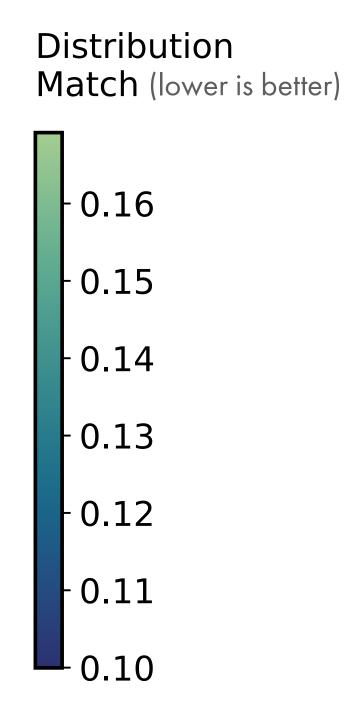
We evaluate them on 15 demographic groups and 3 tasks:

Open Tasks	Self-Description How would you describe yourself?
	Social Media Bio What is your social media username and bio?
Closed Task	Survey Response How would you answer the following question:

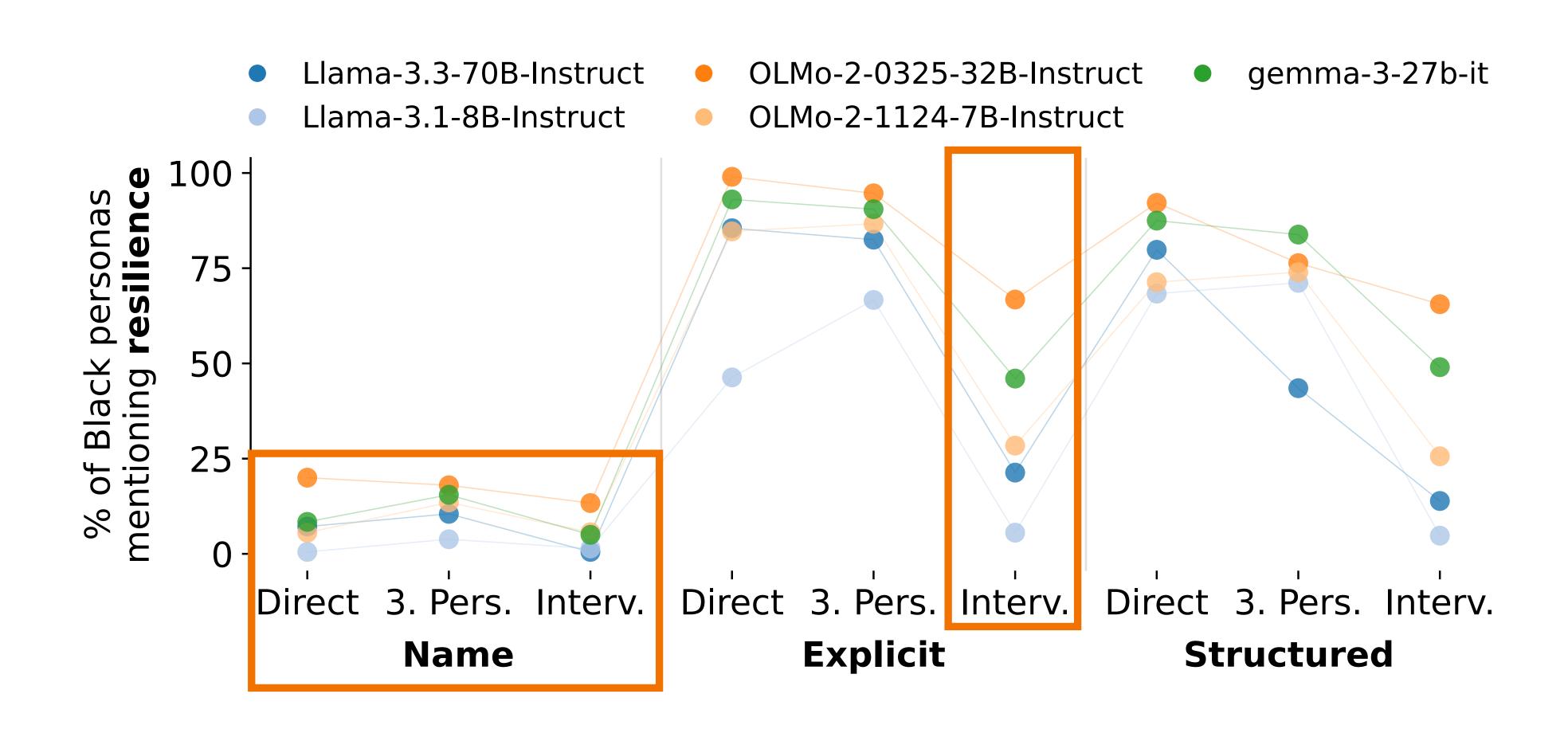


The Persona Prompt Format Impacts Survey Responses





The Persona Prompt Format Can Reduce Stereotyping



The Prompt Makes the Person(a):

A Systematic Evaluation of Sociodemographic Persona Prompting for LLMs

Marlene Lutz, Indira Sen, Georg Ahnert, Elisa Rogers, Markus Strohmaier (EMNLP 2025)

Preprint: https://arxiv.org/abs/2507.16076

Recommendations:

- Critically reflect & clearly document your persona prompt format
- Use the interview prompt format for improved alignment & less stereotypes
- Last names also reduce stereotypes, but threaten validity

Part 3: Survey Response Generation Generating Closed-Ended Survey Responses In-Silico with LLMs

Georg Ahnert, Anna-Carolina Haensch, Barbara Plank, Markus Strohmaier (2025)

Many studies with silicon samples use closed-ended survey questions

Instructions

System Prompt, e.g.:

You are a political scientist predicting survey responses.

You only respond in the following JSON format:

{"response": <response_option>}

Persona & Question

User Prompt, e.g.:

Ideologically, I am a **liberal.** l am **a woman**. l am from **Kansas.**

In the 2016 presidential election, I voted for

prompt

Large Language Model e.g., OLMo 2 32B Instruct

Survey Response Generation Methods

Instructions

System Prompt, e.g.:

You are a political scientist predicting survey responses.

You only respond in the following **JSON format:**

{"response": <response_option>}

Persona & Question

User Prompt, e.g.:

Ideologically, I am a **liberal.**I am **a woman.**I am from **Kansas.**

In the 2016 presidential election, I voted for

Large Language Model e.g., OLMo 2 32B Instruct

Survey Response Generation Methods

Token
ProbabilityBased
Methods

Match token probs with response options

Restricted
Generation
Methods

Restrict LLM
output to valid
response
options only

Open
Generation
Methods

Generate

open-ended

response,

then classify it

Individual- & subpopulation-level evaluations

Instructions

System Prompt, e.g.:

You are a political scientist predicting survey responses.

You only respond in the following JSON format:

{"response": <response_option>}

Persona & Question

User Prompt, e.g.:

Ideologically, I am a **liberal.** l am **a woman.** am from **Kansas.**

In the 2016 presidential election, I voted for

prompt

Large Language Model e.g., OLMo 2 32B Instruct

Survey Response Generation Methods

Token Probability-Based Methods

Match **token** probs with response options

Restricted Generation Methods

Restrict LLM output to valid response options only

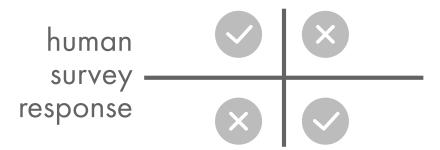
Open Generation Methods

Generate open-ended response, then classify it

Evaluation

Individual-Level Alignment

predicted response



closed-ended survey responses

Subpopulation-Level Alignment

response distr.

predicted human response distr.

An Overview of Survey Response Generation Methods

		Accesses Token- Probabilities	Enforces Format w/ Instructions	Restricts LLM Vocabulary	Generates Open Out- put First ¹	Generates Probability Distribution
	First-Token Probabilities	✓	✓	X	X	✓
Token Prob Based Methods	First-Token Restricted	✓	✓	✓	X	✓
Duscu Wicthous	Answer Prefix	✓	✓	✓	X	✓

Match token-probabilities with response options

An Overview of Survey Response Generation Methods

		Accesses Token- Probabilities	Enforces Format w/ Instructions	Restricts LLM Vocabulary	Generates Open Out- put First ¹	Generates Probability Distribution
	First-Token Probabilities	✓	✓	X	X	✓
Token Prob Based Methods	First-Token Restricted	✓	✓	✓	X	✓
Dascu Mcthous	Answer Prefix	✓	✓	✓	X	✓
Restricted	Restricted Choice	X	✓	✓	Х	X
Generation	Restricted Reasoning	X	✓	✓	✓	X
Methods	Verbalized Distribution	X	✓	✓	X	✓

example output:

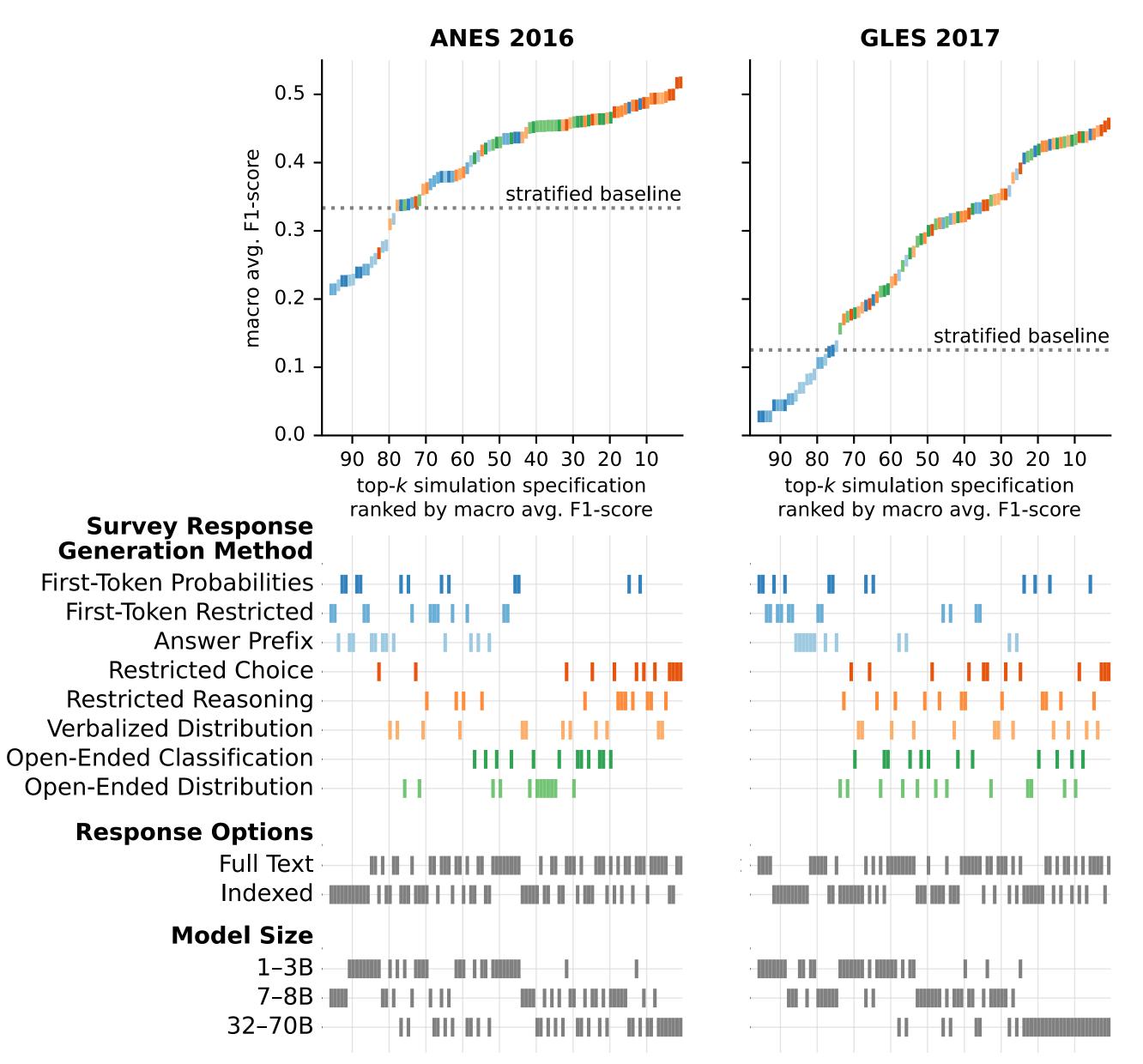
{ "A": 0.5, "B": 0.3, "C": 0.2 }

An Overview of Survey Response Generation Methods

		Accesses Token- Probabilities	Enforces Format w/ Instructions	Restricts LLM Vocabulary	Generates Open Out- put First ¹	Generates Probability Distribution
	First-Token Probabilities	✓	✓	X	X	✓
Token Prob Based Methods	First-Token Restricted	✓	✓	✓	X	✓
Dasca Medical	Answer Prefix	✓	✓	✓	X	✓
Restricted	Restricted Choice	X	✓	✓	X	X
Generation	Restricted Reasoning	X	✓	✓	✓	X
Methods	Verbalized Distribution	X	✓	✓	X	✓
Open Generation	Open-Ended Classification	X	X ²	X ²	✓	X
Methods	Open-Ended Distribution	X	X ²	χ^2	✓	✓

Generate open-ended response, then classify it

The large impact of Survey Response Generation Methods



Subpopulation-level evaluations might be preferrable

political ideology	party identification	US state	•••	true vote choice	predicted vote choice
	a strong Democrat	CA	•••	Trump	Clinton
extr. conserv.	a strong Republican	TX	•••	Clinton	Trump
conservative	Indep. leaning Rep.	AZ	•••	Clinton	Trump
liberal	Indep. leaning Dem.	OH	•••	Trump	Clinton
conservative	a strong Republican	NJ	•••	Non-Voter	Trump

Table 5: Most Difficult to Predict Cases in the ANES 2016 dataset, as identified by a calibrated logistic regression with out-of-fold predictions obtained from 5-fold cross-validation. All five predictions have a true class probability of ≈ 0 .

Token probabilitybased responses are misaligned & brittle

OLS Regression Coefficients

	Level		Level	
	Align- Robu- ment stness		Align- ment	Global Align.
Intercept	397*	371*	.082	.007
First-Token Restrict.	.074	569*	316*	.342*
Answer Prefix	750*	260	.175	.147
Restricted Choice	.763*	.812*	360*	.379*
Restricted Reasoning	.996*	<u>.617*</u>	284*	.263*
Verbalized Distrib.	.756*	.447*	.183*	.384*

Individual-

Subpop.-

Open-ended "reasoning" might not be worth it

OLS Regression Coefficients

	Level		Le	vel
	Align- ment	Robu- stness	Align- ment	Global Align.
Intercept	397*	371*	.082	.007
First-Token Restrict.	.074	569*	316*	.342*
Answer Prefix	750*	260	.175	.147
Restricted Choice	<u>.763*</u>	.812*	360*	.379*
Restricted Reasoning	.996*	<u>.617*</u>	284*	.263*
Verbalized Distrib.	.756*	.447*	.183*	.384*
Open-Ended Classif.	.069	.403	174	.302*
Open-Ended Distrib.	.024	120	.008	.322*

Individual-

Subpop.-

Survey Response Generation

Generating Closed-Ended Survey Responses In-Silico with LLMs

Georg Ahnert, Anna-Carolina Haensch, Barbara Plank, Markus Strohmaier (2025)

Preprint: https://arxiv.org/abs/2510.11586

Recommendations:

- Justify & document your choice of Survey Response Generation Method
- Do not use Token Probability-Based Methods with Instruct-/Chat-Models
- Use the Verbalized-Distribution Method for improved alignment & efficient generation

Generating Survey Responses with Large Language Models

Georg Ahnert, University of Mannheim — <u>georgahnert.de</u> — <u>wanlo.bsky.social</u>

- Design choices in silicon sampling should be well-justified & documented
- Interview-style persona prompts & the Verbalized Distribution generation method significantly improve alignment
- How can silicon samples & human samples be better intergrated in the future?

