W) Check for updates

Article

Social Science Computer Review
2021, Vol. 39(6) 1253-1271

° (] © The Author(s) 2020
Completion Con.dltl.ons and
Response BehaVIOI’ In Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/0894439320971233

Smartphone Surveys: A journals agepub comhomelsc
Prediction Approach Using SSAGE
Acceleration Data

Christoph Kern', Jan Karem Hohne?*, Stephan Schlosser?,
and Melanie Revilla*

Abstract

This study utilizes acceleration data from smartphone sensors to predict motion conditions of
smartphone respondents. Specifically, we predict whether respondents are moving or nonmoving
on a survey page level to learn about distractions and the situational conditions under
which respondents complete smartphone surveys. The predicted motion conditions allow us to
(1) estimate the proportion of smartphone respondents who are moving during survey completion
and (2) compare the response behavior of moving and nonmoving respondents. Our analytical
strategy consists of two steps. First, we use data from a lab experiment that systematically varied
motion conditions of smartphone respondents and train a prediction model that is able to accurately
infer respondents’ motion conditions based on acceleration data. Second, we use the trained model
to predict motion conditions of respondents in two cross-sectional surveys in order to compare
response behavior of respondents with different motion conditions in a field setting. Our results
indicate that active movement during survey completion is a relatively rare phenomenon, as only
about 3%—4% of respondents were predicted as moving in both cross-sectional surveys. When
comparing respondents based on their predicted motion conditions, we observe longer completion
times of moving respondents. However, we observe little differences when comparing moving and
nonmoving respondents with respect to indicators of superficial responding, indicating that moving
during survey completion does not pose a severe threat to data quality.
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Introduction and Background

The use of smartphones in web surveys has continuously increased during the last decade. Gummer
et al. (2019), for example, show across 18 web surveys that were conducted in Germany that the
proportion of smartphone respondents has successively increased from about 5% to 20% between
2012 and 2016. Revilla et al. (2016) observe a similar trend for Spain, Portugal, and several Latin
American countries (see also Bosch et al., 2019b). The reasons for this development in web surveys
seem to be twofold. On the one hand, the number of people who own a smartphone has increased. On
the other hand, high-speed mobile Internet is more widely accessible. This applies to most countries
around the globe, but especially to developing countries (Pew Research Center, 2018a, 2018b).

Smartphones offer many opportunities for innovative data collection that can be used for studying
social science research questions as well as for methodological research. Examples include collect-
ing expenditure data with receipt scanning apps (Jackle et al., 2019), offering voice input options for
answering open-ended questions (Revilla et al., 2020; Revilla & Couper, 2019), and asking respon-
dents to take photographs for supplementing survey responses (Bosch et al., 2019a). Particularly,
smartphone sensors, such as accelerometer, gyroscope, and GPS, allow the collection of detailed
information that can be used to enrich and augment web survey data from smartphones. Data from
built-in sensors allow, for instance, to unobtrusively record respondents’ location in time use surveys
(Elevelt et al., 2019) and to measure objective physical activity for studying health (Weiss et al.,
2018), happiness (Lathia et al., 2017), or (side-)effects of long-term unemployment (Kreuter et al.,
2018).

At the same time, however, the increasing usage of smartphones as survey devices might also
introduce challenges for survey data quality. In principle, smartphones enable respondents to partic-
ipate in web surveys whenever and wherever they want with almost no locality, situation, or time
restrictions (Mavletova, 2013). Consequently, smartphone respondents are frequently surrounded by
third parties during survey participation (Toninelli & Revilla, 2016b), which might have a negative
impact on response behavior because respondents can get distracted due to their environment. Lynn
and Kaminska (2012) distinguish three types of distractions during survey participation: (1) distrac-
tions that demand aural attention, such as music playing in the background (see also Wenz, 2019),
(2) distractions that demand visual attention, such as looking after children, and (3) multitasking, such
as having a conversation. Indeed, Toninelli and Revilla (2016a) show that smartphone respondents
report more distractions and/or multitasking behavior, such as watching TV and talking with other
people, than PC respondents. However, one problem associated with these findings on distractions and
multitasking is that they are based on self-reports, implying that respondents must admit that they
might not pay constant attention. Thus, self-reports on distractions and multitasking are subject to
social desirability bias and recall error, which might cause imprecise measures (Wenz, 2019).

This study aims to bridge the challenges and opportunities of smartphones as survey devices by
utilizing passively collected acceleration data from smartphone sensors as an avenue for studying
distractions and multitasking of smartphone respondents. More specifically, this study has two
objectives: First, we demonstrate how acceleration data can be used to infer motion conditions of
respondents (i.e., identifying moving vs. nonmoving respondents during survey completion). Sec-
ond, we link the predicted motion conditions to response behavior and indicators of superficial
responding. This twofold approach attempts to exemplify how methodological advances in data
collection with smartphones and analysis of sensor data can be utilized in survey research to study
motion conditions and response behavior. While we estimate the prevalence of different motion
conditions and their effects on (superficial) responding in two concrete smartphone surveys, the
proposed prediction approach allows future research to identify moving and nonmoving respondents
and to analyze their response behavior in (future) smartphone surveys that collect acceleration data.
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Previous studies on distractions and multitasking proposed to overcome the drawbacks of
self-reports by passively collecting paradata' during web survey completion. For instance, Sendel-
bah et al. (2016) suggest to use so-called JavaScript “OnBlur” functions that measure the in-/activity
of web survey pages—whether the browser tab or window that hosts the web survey is the active or
processed one (see Callegaro, 2013; Couper & Peterson, 2017; Diedenhofen & Musch, 2017; Hohne
etal., 2017, 2018; Hohne & Schlosser, 2018, 2019; Hohne, Schlosser, et al., 2020; Revilla & Couper,
2018a, 2018b; Sendelbah et al., 2016)—to infer on-device multitasking, such as switching browser
tab or window to check incoming emails or social media notifications. Hohne, Schlosser, et al.
(2020) show that on-device multitasking gathered by means of OnBlur functions occurs among 10%
of all smartphone respondents in a web survey.

Beyond the use of paradata to detect multitasking, Hohne and Schlosser (2019) and Toepoel and
Lugtig (2015) suggest to passively collect sensor data in smartphone surveys to draw conclusions
about respondents’ completion conditions. Accelerometers measure the rate of change of velocity of
an object over time, allowing researchers to unobtrusively record physiological states, such as
movements (see Elhoushi et al., 2017; Harari et al., 2016; He et al., 2016; Hohne, Revilla, et al.,
2020; Hohne & Schlosser, 2019; Toepoel & Lugtig, 2015). If a person moves or walks, they are
creating acceleration (He et al., 2016), which is detected by the smartphone that is commonly worn
on the body (e.g., in the pocket). This situation can be applied to respondents that have the smart-
phone in their hands and complete a web survey, referring to a “respondent-device” link (HShne,
Revilla, et al., 2020; Hohne & Schlosser, 2019). To put it differently, respondents’ motions are
detectable by the acceleration sensor of smartphones, allowing researchers to classify smartphone
respondents on the basis of their motion levels (i.e., acceleration).

In contrast to paradata, which can be used to study on-device multitasking, the usage of accel-
eration data provides an avenue to learn about the (situational) conditions in which respondents
complete web surveys. For instance, Hohne, Revilla, et al. (2020) show that completing surveys
outdoors, moving around during survey completion, and the presence of third parties during survey
completion significantly increase the acceleration of smartphones. Thus, acceleration data may be
used to study distractions that go beyond respondent-initiated multitasking activities, without rely-
ing on self-reports. More specifically, respondents who move around (e.g., outdoors or at home) are
likely to encounter aural and/or visual distractions, which might divert their attention away from the
web survey. In relation to this, Hohne and Schlosser (2019) report significantly longer completion
times and stronger primacy effects for respondents who were experimentally assigned to a “moving”
condition while completing a smartphone survey, compared to respondents who were assigned to a
“nonmoving” condition.? While the detection of such completion conditions is limited when using
self-reports or paradata in the form of OnBlur functions, acceleration data from smartphone sensors
represent a new gateway for mobile web survey research to infer distractions and multitasking.

In what follows, we outline the conceptual twofold approach of this study for predicting motion
conditions and studying their relationship with superficial responding and present the associated
research questions. Then, we describe the data sources and study designs including the underlying
samples, the survey questions used, and the analytical strategies. We then present the results of the
study, and finally, we discuss practical implications associated with the feasibility of predicting
motion conditions in smartphone surveys and address future research perspectives.

Conceptual Approach and Research Questions

Although smartphone sensors allow researchers to unobtrusively collect information about respon-
dents’ physiological states, there is little research that utilizes acceleration data to study completion
conditions in web surveys or classifies respondents based on predicted motion conditions. However,
as previously outlined, preliminary evidence suggests that respondents with different motion
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conditions may differ in terms of response behavior. We expect that moving is associated with more
(situational) distractions and multitasking than nonmoving and thus fosters superficial responding.
More specifically, we assume that performing multiple tasks at the same time (e.g., answering
survey questions and walking around) implies a relocation of cognitive resources (Zwarun & Hall,
2014), which may increase completion times because respondents must devote time for the addi-
tional task (e.g., environmental orientation) and must (partially) restart the cognitive response
process when refocusing on the survey. The same mechanism may increase low (or high) intraindi-
vidual response variability (IRV) and primacy effects for moving respondents who are engaging in
multiple tasks (e.g., safely reaching their destination and completing the survey). In line with this
reasoning, we address the following research questions: (1) How accurately can we predict respon-
dents’ motion conditions in smartphone surveys using acceleration data? (2) How common are
different types of motion conditions in smartphone surveys? and (3) How do respondents with
different predicted motion conditions differ with respect to response behavior?

To study motion conditions of smartphone respondents and their effects on response behavior by
using acceleration data, we employ a two-step approach. In a first step, we train machine learning
models using high-frequency acceleration data to learn the link between different motion conditions
and acceleration profiles. The acceleration data were collected in a lab experiment that system-
atically varied the motion conditions (i.e., sitting, standing, walking, and stair climbing) of respon-
dents while they completed a web survey on their smartphone. More specifically, we train and
evaluate regularized regression and tree-based models using grouped cross-validation, reflecting the
hierarchical structure of the acceleration data with survey pages nested in respondents. In building
our prediction models, we focus on a binary outcome variable with the labels moving (i.e., walking
and stair climbing) and nonmoving (i.e., sitting and standing). Note that the data from the lab
experiment allow the prediction models to learn patterns from the acceleration data that distinguish
moving from nonmoving respondents given the “ground truth” (i.e., the true outcome is observed).
Without this knowledge, ad hoc decisions on, for instance, a fixed (and arbitrary) acceleration
threshold that differentiates both conditions would need to be specified in order to infer motion
conditions in new data sets. Furthermore, such an approach would most likely focus on average
acceleration (over time) and would therefore not utilize the full level of granularity that acceleration
data offer.

In a second step, the trained models are used to predict respondents’ motion conditions in two
(new) self-administered smartphone surveys that also collected high-frequency acceleration data of
respondents’ smartphones during web survey completion. This allows us to study the prevalence of
different predicted motion conditions and the effects of motion conditions on response behavior in a
field setting. In this context, we compare completion times, IRV, primacy effects, and compliance
with an instructional manipulation check (IMC) between respondents with different predicted
motion conditions.

Method
Data Sources and Study Designs

In this study, we use three different data sources: data from a lab experiment (Data Source 1) and
data from two cross-sectional surveys (Data Sources 2 and 3). All data sets contain high-frequency
acceleration data that were collected using the open-source JavaScript-based tool “SurveyMotion
(SMotion)” developed by Hohne and Schlosser (2019).> SMotion collects the total acceleration (TA)
of mobile devices, such as smartphones, on a survey page level. TA is defined as follows (see, for
instance, He et al., 2016):
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T4 = \/a} +a; +a.
Equation 1: Calculating TA.

Note. Accelerations (@) along the x-, y-, and z-axis are defined as ay, a,, and a., respectively.

The sampling rate of the TA primarily depends on the device and/or on frequency restrictions set
in the JavaScript code. In this study, the TA of smartphones was measured without any frequency
restrictions set in the JavaScript code to register it as precisely as possible. On average, the TA was
measured every 17.9 ms.

In addition, we collected several kinds of paradata, such as completion times and
User-Agent-Strings, that were also collected on a survey page level. For this purpose, we used the
open-source JavaScript-based tool “Embedded Client Side Paradata” developed by Schlosser and
Hohne (2018). We obtained informed consent for the collection of acceleration data and paradata in
the lab experiment and in the two cross-sectional surveys.

While the first data set (Data Source 1) serves for training the machine learning models, the last two
data sets (Data Sources 2 and 3) serve for predicting respondents’ motion conditions in a field setting
and to compare the response behavior of respondents with different predicted motion conditions.

Data Source I: Lab Experiment. A total of N = 89 students from the University of Géttingen in
Germany took part in the lab experiment in 2017. These participants were between 18 and 42 years
with a mean age of 24.5 (SD = 4.4). Overall, 55% were female, and at least 85% had participated
previously in a web survey. Furthermore, 99% used their smartphone and 96% used the Internet on a
daily basis.

Participants were randomly assigned to one of four experimental groups. The first group (n = 22)
was seated in front of a desk with the smartphone lying on the desk during survey completion (sitting
condition). The second group (n = 22) stood at a fixed point with the smartphone in their hands
during survey completion (standing condition). The third group (r = 23) walked along an aisle with
the smartphone in their hands during survey completion (walking condition). The fourth group
(n = 22) climbed stairs with the smartphone in their hands during survey completion
(stair-climbing condition). The entire study was supervised by an experimenter to ensure proper
compliance with the assigned motion conditions.

To evaluate the effectiveness of random assignment and the sample composition between the four
experimental groups, we conducted y tests. The results showed no statistically significant differ-
ences regarding age, gender, survey participation, smartphone usage, and Internet usage.*

Data Source 2: Cross-Sectional Survey |. The data were collected at the University of Gottingen in
Germany in December 2017. Students were invited by email stating the topic of the study and
including a link that directed them to the survey. A total of 1,711 students started the survey using a
smartphone,” which took about 9 min. Among these, 466 were dropped because they only visited the
title page (n = 48), broke off before being asked any study-related questions (n = 54), had no
accurately measured acceleration data because of deactivated JavaScript (n = 8), or their smart-
phones were not equipped with accelerometers that allow for the measurement of pure TA without
gravity (n = 356). This leaves us with 1,245 respondents available for statistical analyses.

These respondents were aged between 17 and 74 years, with a mean age of 23.3 (SD = 3.9), and
67% of them were female. All respondents had completed a college preparatory secondary school or
university-level education. The distribution of sociodemographic characteristics is largely similar
for the cases that were dropped from the analyses (see Online Appendix A in the Online Supplement
of this article).
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Data Source 3: Cross-Sectional Survey 2. The data were collected by the nonprobability access panel
Respondi in Germany in July and August 2019. A total of 1,726 respondents started the smartphone
survey, which took about 20 min.® Among these, 579 were dropped because they only visited the
title page (n = 57), broke off before being asked any study-related questions (n = 24), had no
accurately measured acceleration data because of deactivated JavaScript (n = 5), or their smart-
phones were not equipped with accelerometers that allow for the measurement of pure TA without
gravity (n = 493). This leaves us with 1,147 respondents.

These respondents were aged between 18 and 70 years, with a mean age of 43.9 (SD = 14.8), and
63% of them were female. In terms of education, 10% had completed lower secondary school, 38%
intermediate secondary school, and 52% college preparatory secondary school or university-level
education. We again observe little differences between the sample with complete information and
the dropped cases (see Online Appendix A in the Online Supplement of this article).

Survey Questions

Data Source I: Lab experiment. The lab data are based on three single questions that were presented
individually on the survey page and eight questions with an item-by-item approach that were
presented together on one survey page (see Online Appendix B in the Online Supplement of this
article). The three single questions and the eight item-by-item questions dealt with achievement and
job motivation. These questions were adopted from the Cross Cultural Survey for Work and Gender
Attitudes (Hanson Frieze, 2010) and the German General Social Survey (Terwey, 2000). The
presentation order of the questions was randomized to limit order effects. The questions were in
German, which was the mother tongue of 93% of the participants.

Data Sources 2 and 3: Cross-Sectional Surveys | and 2. The data are based on five single questions that
were presented individually on the survey page and 16 questions with an item-by-item approach that
were presented on two survey pages (see Online Appendix B in the Online Supplement of this
article). The single and item-by-item questions dealt with achievement and job motivation and were
also adopted from the Cross Cultural Survey for Work and Gender Attitudes (Hanson Frieze, 2010)
and the German General Social Survey (Terwey, 2000). The response scales of these questions
slightly differed between the two cross-sectional surveys (i.e., endpoint labeled and fully labeled). In
addition, both surveys included an IMC that was adopted from Berinsky et al. (2014; see Online
Appendix B in the Online Supplement of this article). All questions and the IMC were in German,
which was the mother tongue of 93% and 96% of the participants, respectively.

Analytical Strategies

Step I: Training prediction models based on acceleration data. To infer completion conditions of
respondents in smartphone surveys, we use the acceleration data that were collected in the lab
experiment (Data Source 1) to train and evaluate several prediction models. In this step, we extract
features (i.e., predictor variables) from the acceleration data of the lab experiment by aggregating
over the repeated acceleration measurements that were collected for each survey page. More spe-
cifically, we compute the following summary statistics for the TA values of each respondent and
survey page (i.e., respondent-page): mean, median, variance, median absolute deviation, interquar-
tile range, minimum, maximum, range, and percentiles (i.e., 5%, 10%, 25%, 75%, 90%, and 95%).
This data preparation strategy allows us to sidestep the fact that the number of acceleration values
per respondent and survey page depends on the sampling rate of respondents’ smartphone and the
time to complete a given survey page (i.e., the number of observed acceleration values varies widely
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Table I. Distribution of Acceleration Features: Lab Experiment.

Training Data (Moving) Training Data (Nonmoving)

Feature Minimum Mean Maximum n Minimum Mean Maximum n

TA mean 0.307 1.776 3.907 358 0.015 0.269 1.793 348
TA median 0.250 1.659 3.960 358 0.010 0.212 1.240 348
TA variance 0.049 0.793 3.165 358 0 0.102 3.638 348
TA MAD 0.178 0.762 1.423 358 0 0.090 0.801 348
TAIQR 0.250 1.057 2.040 358 0.010 0.152 3.648 348
TA minimum 0 0.188 0.838 358 0 0.015 0.180 348
TA maximum 1.550 5.665 18.830 358 0.060 1.890 16.800 348
TA range 1.550 5.477 18.740 358 0.060 1.874 16.780 348
TA q5 0.070 0.614 2.550 358 0 0.107 0.950 348
TAqlO 0.090 0.790 2.740 358 0 0.124 0.950 348
TA q25 0.150 1.162 3.340 358 0 0.158 0.960 348
TA q75 0.400 2.233 4530 358 0.020 0.313 3.860 348
TA q90 0.592 2.892 5.520 358 0.026 0.466 4.623 348
TA q95 0.730 3.376 7.338 358 0.030 0.622 5.232 348

Note. TA = total acceleration; MAD = median absolute deviation; IQR = interquartile range.

Table 2. Distribution of Acceleration Features: Cross-Sectional Surveys | and 2.

Cross-Sectional Survey | Cross-Sectional Survey 2

Feature Minimum Mean Maximum N Minimum Mean Maximum N

TA mean 0.006 0.308 13.949 12,483 0.010 0.312 19.504 9,992
TA median 0 0.240 13.950 12,483 0.005 0.240 19.500 9,992
TA variance 0 0.135 43.466 12,483 0 0.133 20.339 9,992
TA MAD 0 0.121 5.308 12,483 0 0.120 3.173 9,992
TA IQR 0 0.194 7.547 12,483 0 0.189 4.330 9,992
TA minimum 0 0.018 1.500 12,483 0 0.018 0.997 9,992
TA maximum 0.040 2.284 79.120 12,483 0.030 2.728 72.170 9,992
TA range 0.040 2.266 79.090 12,483 0.030 2710 72.170 9,992
TA g5 0 0.104 13.850 12,483 0 0.106 19.370 9,992
TAql0 0 0.124 13.870 12,483 0 0.126 19.410 9,992
TA q25 0 0.167 13.900 12,483 0 0.168 19.460 9,992
TA q75 0.010 0.363 14010 12,483 0.010 0.360 19.580 9,992
TA q90 0.010 0.568 14.663 12,483 0.020 0.573 19.680 9,992
TA q95 0.020 0.756 15.012 12,483 0.020 0.777 19.758 9,992

Note. TA = total acceleration; MAD = median absolute deviation; IQR = interquartile range.

between respondent-pages). Tables 1 and 2 present descriptive statistics of the acceleration features
(i.e., independent variables) for the lab experiment and both cross-sectional surveys.

In terms of the outcome variable, we focus on a binary variable that condenses the four conditions
of the lab experiment into the categories moving (i.e., walking and stair climbing) and nonmoving
(i.e., sitting and standing). In line with previous research, we expect that these physiological states
are most informative when studying completion conditions in smartphone surveys (see Hohne,
Revilla, et al., 2020; Héhne & Schlosser, 2019).

In building our prediction models, we consider regularized regression methods (including stan-
dard logistic regression as a special case), decision trees, and tree-based ensemble methods to
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include both parametric and nonparametric (i.e., more flexible) techniques in our set of models.
A key feature of the tree-based methods is their ability to automatically adapt to complex functional
forms of the relationship between the predictors and the outcome, which is particularly valuable
when little theoretical guidelines for a priori model specification exist (Kern et al., 2019). Specif-
ically, we train prediction models using the following methods and tuning grids’ (see, for instance,
Hastie et al., 2009; Kuhn & Johnson, 2013):

e Elastic net (GLMnet; Friedman et al., 2010)
oa=1[0,0.5,1], A =[0.1,..., 0]

e Conditional Inference Trees (CTREE; Hothorn & Zeileis, 2015)
o mincriterion = [.99, .95, .90, .85, .75]

e Random forests (RF) and extremely randomized trees (Wright & Ziegler, 2017)®
o splitrule = [gini, extratrees], mtry = [3, 4], min.node.size = [15]

e Extreme Gradient Boosting (XGBoost; Chen & Guestrin, 2016)

o max_depth = [3, 5, 7, 9], nrounds = [500, 1,000, 1,500], n = [.01, .05].

The models are tuned and evaluated using nested cross-validation with 10 outer folds and 10 inner
folds. In the inner cross-validation loop, the best tuning parameter setup for each method is selected
based on cross-validated binomial log-loss. In the outer cross-validation loop, the respective best
models are evaluated and compared based on cross-validated accuracy, log loss, and area under the
receiver operating characteristic (ROC) curve (ROC-AUC). We employ grouped cross-validation in
the outer cross-validation loop to account for the hierarchical structure of the training data by
ensuring that all observations (survey pages) from a given respondent are either in the training set
or in the holdout set. By (repeatedly) using different subsets of the data for model training and model
evaluation, the cross-validation results allow us to learn about the out-of-sample performance of the
prediction models (i.e., their ability to generalize to new data). Nesting two cross-validation loops
cleanly separates model selection (tuning) and model assessment such that honest evaluation of the
selected models with new (outer) test sets is possible (Hastie et al., 2009).

Step 2: Predicting motion conditions and analyzing response behavior. In the next step, the selected final
model is employed to predict motion conditions in the two cross-sectional surveys (Data Sources
2 and 3). Again, aggregated acceleration variables are used as features. We compare the response
behavior of moving and nonmoving respondents using (generalized) mixed-effects regression mod-
els (with survey pages nested in respondents; see Raudenbush & Bryk, 2002) and logistic regres-
sions, with the predicted motion condition being the predictor of main interest. We further include
age, gender, and mother tongue (German) for Data Sources 2 and 3 as control variables, assuming
that particularly younger respondents might be more likely to complete surveys “on the go”” and have
been shown (along with male respondents and immigrants) to be more prone to superficial respond-
ing (Schonlau & Toepoel, 2015; van Vaerenbergh & Thomas, 2013). The outcome variables
(i.e., response behavior indicators) of the (mixed-effects) regression models are defined as follows
(see Online Appendix A in the Online Supplement of this article for descriptive statistics)’:

e Completion time: Time in seconds that respondents needed to complete the web survey page
(i.e., the time elapsing between question presentation on the screen and submitting the
response by clicking next).

o We applied a distribution-based outlier definition: We excluded all respondents with
completion times below the 5% percentile or above the 95% percentile.
o Calculated for survey pages with single and item-by-item questions.
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e Low (high) IRV: SD of responses on a survey page lower (higher) than the 20% (80%)
percentile (see Dunn et al., 2018; Marjanovic et al., 2015).
o Binary (low IRV): 1 = “IRV < 20% percentile,” 0 = “IRV > 20% percentile.”
o Binary (high IRV): 1 = “IRV > 80% percentile,” 0 = “IRV < 80% percentile.”
o Calculated for survey pages with item-by-item questions only.
e Primacy effects: selecting the first category of a response scale (van Vaerenbergh & Thomas,
2013).
o Binary: 1 = “first category,” 0 = “not first category.”
o Calculated for survey pages with single and item-by-item questions.
e Compliance with an IMC: correctly answering an IMC (Berinsky et al., 2014).
o Binary: 1 = “compliance,” 0 = “noncompliance.”

The code and the final (trained) RF model that is used in this article are available at the following
GitHub repository: https://github.com/chkern/survey-motion.

Results

Research Question 1: How accurately can we predict respondents’ motion conditions in
smartphone surveys using acceleration data?

The cross-validation results of the machine learning models predicting motion conditions with the
training data (Data Source 1) are reported in Table 3. More precisely, we report summary statistics
for the distribution of accuracy, ROC—AUC, and log loss over all outer holdout sets (i.e., samples
were not used for model tuning) for the best model of each method. For both accuracy (i.e., the
proportion of correct classifications, range in [0, 1]) and ROC-AUC (i.e., range in [0, 1] with 0.5
representing a noninformative model), higher values indicate better prediction performance. In
contrast, for binomial log-loss (i.e., the distances between the predicted probabilities and the true
classes, no upper bound with the log loss of a [useless] model which predicts 0.5 for all cases being
In (0.5) = 0.693), lower values indicate better performance.

Table 3. Prediction Performance.

Model Minimum First Quartile Median Mean Third Quartile Maximum
Accuracy
GLMnet .889 0.986 0.994 976 | |
CTREE .884 0.964 0.985 973 0.997 |
RF 913 0.976 0.986 .980 | |
XGBoost .875 0.964 0.986 971 | |
ROC-AUC
GLMnet .963 0.994 | .993 | |
CTREE .909 0.994 | .988 | |
RF .970 | | .995 | |
XGBoost 971 0.996 | .994 | |
Log loss
GLMnet 0 0.004 0.024 .078 0.114 0.350
CTREE .008 0.015 0.044 334 0.086 2.573
RF .004 0.016 0.041 .106 0.077 0.492
XGBoost 010 0.013 0.046 .094 0.128 0317

Note. GLMnet = Elastic net (Friedman et al., 2010); CTREE = Conditional Inference Trees (Hothorn & Zeileis, 2015);
RF = Random forests (Wright & Ziegler, 2017); XGBoost = Extreme Gradient Boosting (Chen & Guestrin, 2016).
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The results show a strong prediction performance for all four machine learning models, irrespec-
tive of the performance measure used. Thus, the derived acceleration features can be used to build
prediction models that sharply discriminate between the two motion conditions (moving and non-
moving) with mean ROC—AUCs between 0.988 and 0.995. As even the (simpler) CTREE model
achieves a mean ROC-AUC of 0.988, this result underlines the predictive power of the acceleration
data for the prediction task at hand. In order to utilize the best possible model for predicting motion
conditions in the two cross-sectional surveys (Data Sources 2 and 3), we selected the RF as the final
prediction model, as it achieves the highest mean accuracy (0.980) and the highest mean ROC-AUC
(0.995).

Research Question 2: How common are different types of motion conditions in smartphone
surveys?

We calculated proportions of respondents that are predicted as moving and nonmoving in the two
cross-sectional surveys (Data Sources 2 and 3) based on the RF model that was trained with data of
the lab experiment as outlined above (Data Source 1). Overall, a small proportion of respondents is
predicted as moving while answering the survey questions. This is the case for both cross-sectional
surveys (Data Sources 2 and 3) and all web survey pages under investigation in this study. On
average, we predict that 3.7% (Data Source 2) and 2.7% (Data Source 3) of the respondents were
moving, indicating only minor differences between the two cross-sectional surveys. Our predictions
indicate that active movement, such as walking around, is a relatively rare completion behavior in
both studies at hand.'® Proportions of respondents that are predicted as moving and nonmoving for
each survey page of both cross-sectional surveys are presented in Online Appendix D in the Online
Supplement of this article.

Research Question 3: How do respondents with different predicted motion conditions differ
with respect to response behavior?

The predicted motion conditions allow us to further investigate whether and to what extent
moving respondents differ from nonmoving respondents in terms of response behavior. In this
context, we assume that moving, compared to nonmoving, is associated with more (situational)
distractions and, thus, longer completion times and lower response quality.

Completion Time

As a first step, we compared completion times between respondents that were predicted as moving
and respondents that were predicted as nonmoving by using mixed-effects regression models. The
results are presented in Table 4. Note that all regressions represent pooled models that are based on
data from Cross-Sectional Surveys 1 and 2. Model 1 reveals that completion times are higher for
moving respondents than for nonmoving respondents. Specifically, we observe 0.772 s longer
completion times for predicted moving respondents on average. Model 2 shows that these relation-
ships are amplified when including demographic controls (i.e., age, gender, and mother tongue). In
contrast, we observe shorter completion times in Cross-Sectional Survey 2 compared to
Cross-Sectional Survey 1 (Model 2). With little surprise, we observe that completion times are
higher for web survey pages with an item-by-item approach (Model 3). Model 4 indicates that longer
completion times of moving respondents can specifically be observed on survey pages with
item-by-item questions, as shown by the positive interaction effect of Moving x Item-by-item.
By contrast, there is little variation in the positive effect of moving between the two
cross-sectional surveys (Model 5).
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Table 4. Mixed-Effects Regression Parameters (Estimated Coefficients and SE) on the Dependent Variable
Completion Time (in Seconds).

Predictor Variable Model | Model 2 Model 3 Model 4 Model 5
Moving 0.772 (.327) 0.959 (.334) 0.958 (.334) 0377 (.386)  0.844 (.420)
p .019 .005 .005 .330 .045
Survey 2 —1.204 (.115) —3.196 (.176) —3.197 (.176) —3.186 (.176) —3.208 (.178)
p .000 .000 .000 .000 .000
Item-by-item 28.161 (.487) 128.103 (.488) 28.163 (.487)
p .000 .000 .000
Moving x Item-by-item 1.883 (.629)

p .003

Moving x Survey 2 0.301 (.675)
p 656
Constant 14.928 (5.208) 15.780 (5.200) 7.734 (0.296) 7.745 (0.297) 7.738 (0.296)
Demographic controls Yes Yes Yes Yes
Respondents 1,858 1,795 1,795 1,795 1,795
Pages 7 7 7 7 7
Observations 15,239 14,698 14,698 14,698 14,698

? (fixed effects) .002 .006 .802 .802 .801

r* (fixed and random effects) .853 .855 836 .836 836
AIC 98,923.260 95,062.610 95,025.260 95,017.390 95,026.010
BIC 98,969.040 95,130.970 95,101.210 95,100.940 95,109.560
Note. SE in parentheses. Coding of the variables: moving (I = yes), Cross-Sectional Survey 2 (I = yes), and item-by-item

(I = yes). We controlled for the following demographics: age, gender, and mother tongue (German) AIC: Akaike information
criterion; BIC: Bayesian information criterion. r* was calculated following Nakagawa and Schielzeth (2013).

Low and High IRV

We now focus on web survey pages with item-by-item questions only and investigate low
(e.g., nondifferentiation) and high (e.g., random responses) IRV, as indicators of superficial respond-
ing. Table 5 reports the results. While Models 1-3 focus on low IRV, Models 4—- 6 use high IRV as
the dependent variable.

Low IRV does not seem to be affected by the predicted motion condition (Model 1). This
similarly applies when controlling for demographic characteristics (Model 2). The interaction Mov-
ing x Cross-Sectional Survey 2 in Model 3, however, indicates a stronger (positive) effect of
moving on low IRV in Cross-Sectional Survey 2.

Interestingly, for high IRV, we find a negative effect of moving that increases from Model 4 to
Model 5. This indicates that moving respondents are less likely to exhibit highly variable response
patterns on web survey pages with item-by-item questions. The conditional main effect of moving
(while including the interaction term Moving x Cross-Sectional Survey 2) shows that this is
specifically the case for Cross-Sectional Survey 1 (Model 6).

Primacy Effects

In the generalized mixed-effects regressions on primacy effects, we again consider web survey
pages with single and item-by-item questions. The results are presented in Table 6. Overall,
Models 1 and 2 show only little differences between moving and nonmoving respondents with
respect to their tendency to select the first category of a response scale. Primacy effects are
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Table 5. Generalized Mixed-Effects Regression Parameters (Estimated Coefficients and SE) on the Dependent
Variables Low IRV (I = Yes) and High IRV (I = Yes).

Low IRV High IRV
Predictor
Variable Model | Model 2 Model 3 Model 4 Model 5 Model 6
Moving 0.030 (.213) 0.114 (.214) —0.197 (.273) —0.336 (.265) —0.489 (.279) —0.676 (.348)
p .888 .595 AT72 .206 .080 .053
Survey 2 —0.156 (.075) —0.109 (.108) —0.147 (.109) 0.004 (.085) —0.265 (.126) —0.283 (.127)
p .039 314 179 .965 .035 .026
Moving X 0.892 (.445) 0.554 (.574)
Survey 2
p .046 335
Constant —1.230 (.060) —1.334 (.090) —1.317 (.091) —1.704 (.080) —1.348 (.104) —1.340 (.104)
Demographic Yes Yes Yes Yes
controls
Respondents 1,851 1,808 1,808 1,851 1,808 1,808
Observations 4,794 4,653 4,653 4,794 4,653 4,653
Pseudo-r* .002 .002 .004 .001 011 011
(fixed
effects)
Pseudo-r* 156 149 .148 272 263 264
(fixed and
random
effects)
AIC 5257212 5,079.390 5,077.416 4,738.738 4,606.210 4,607.294
BIC 5,283.113 5,124.507 5,128.978 4,764.639 4,651.327 4,658.856

Note. SE in parentheses. Coding of the variables: moving (I = yes) and Cross-Sectional Survey 2 (I = yes). We controlled for
the following demographics: age, gender, and mother tongue (German). Pseudo-r* was calculated following Nakagawa and
Schielzeth (2013). AIC = Akaike information criterion; BIC = Bayesian information criterion; IRV = intraindividual response
variability.

more common on survey pages with item-by-item questions (Model 3). In addition, Model 4
indicates a stronger (negative) effect of moving on primacy effects for web survey pages with
item-by-item questions (interaction of Moving x Item-by-item), compared to the weak (posi-
tive) effect of moving for web survey pages with single questions (conditional main effect of
moving). Furthermore, the conditional main effect of moving (while including the interaction
term Moving x Cross-Sectional Survey 2) in Model 5 indicates that moving respondents in
Cross-Sectional Survey 1 are less likely to exhibit primacy effects, compared to nonmoving
respondents.

IMC

Finally, we conducted a logistic regression investigating the compliance with an IMC of moving and
nonmoving respondents. We now focus on one single web survey page. Table 7 reports the results.
Models 1 and 2 show that both moving and nonmoving respondents are equally likely to comply
with the IMC. However, respondents in Cross-Sectional Survey 2 generally have a lower probability
of complying with the IMC. Finally, Model 3 shows no substantial interaction between the predicted
motion condition and the data source (Moving x Cross-Sectional Survey 2).
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Table 6. Generalized Mixed-Effects Regression Parameters (Estimated Coefficients and SE) on the Dependent
Variable Primacy (I = Yes).

Predictor Variable Model | Model 2 Model 3 Model 4 Model 5
Moving —0.106 (.082) —O0.115(.084) —0.115 (.084) 0.266 (.164) —0.183 (.102)
p .195 71 170 .106 .075
Survey 2 —0.050 (.028) —0.058 (.044) —0.058 (.044) —0.060 (.044) —0.067 (.044)
p .073 .186 .186 174 .134
[tem-by-item 1.356 (297) 1.371 (.298)  1.357 (.298)
b .00001 .00001 .00001
Moving x Item-by-item —0.460 (.175)
p .009
Moving x Survey 2 0.198 (.171)
p 246
Constant —1.955 (266) —1.933 (.272) —2.320 (.166) —2.333 (.166) —2.318 (.166)
Demographic controls Yes Yes Yes Yes
Respondents 1,873 1,809 1,809 1,809 1,809
Pages 7 7 7 7 7
Observations 50,497 48,864 48,864 48,864 48,864
Pseudo-r* (fixed effects) .0002 .001 .075 .076 .075
Pseudo-r* (fixed and random 275 276 .268 268 268
effects)
AIC 52,281.600 50,725.290 50,717.790 50,713.540 50,718.480
BIC 52,325.740 50,795.660 50,796.960 50,801.510 50,806.450

Note. SE in parentheses. Coding of the variables: moving (I = yes), Cross-Sectional Survey 2 (I = yes), and item-by-item
(I = yes). We controlled for the following demographics: age, gender, and mother tongue (German). Pseudo-r* was
calculated following Nakagawa and Schielzeth (2013); AIC = Akaike information criterion; BIC = Bayesian information
criterion.

Discussion and Conclusion

This study aimed at utilizing acceleration data from smartphone sensors to predict motion conditions
of smartphone respondents and to study the effects of different motion conditions on superficial
responding. Specifically, we built prediction models to classify respondents into two motion con-
ditions (moving and nonmoving) on the survey page level using data from a lab experiment. On this
basis, we predicted the motion conditions of respondents in two “real-world” cross-sectional surveys
and compared moving and nonmoving respondents with respect to their response behavior.

Regarding our first research question (i.e., how accurately can we predict respondents’ motion
conditions in smartphone surveys?), the cross-validation results showed that acceleration data from
smartphone sensors can indeed be used to precisely predict motion conditions. We observed strong
prediction performance for all methods that were considered (GLMnet, CTREE, RF, and XGBoost),
with RF showing the best results over several metrics (accuracy, log loss, and ROC—AUC). The
trained RF model is released along with this article and can be used by researchers at their own
discretion to predict motion conditions in (new) smartphone surveys.

In order to answer our second research question (i.e., how common are different types of motion
conditions in smartphone surveys?), we utilized the RF model to predict motion conditions in two
cross-sectional surveys. The results indicated that active movement, such as walking around,
during survey completion is a relatively rare phenomenon. On average, we predicted about 4%
(Cross-Sectional Survey 1) and about 3% (Cross-Sectional Survey 2) of the respondents were
moving while answering the survey questions under investigation, with little variation across survey
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Table 7. Logistic Regression Parameters (Estimated Coefficients and SE) on the Dependent Variable
Compliance With IMC (I = Yes).

Predictor Variable Model | Model 2 Model 3
Moving .284 (.261) 225 (.264) .566 (.351)
p 277 .395 107
Survey 2 —.897 (.085) —.969 (.121) —.939 (.122)
p .000 .000 .000
Moving x Survey 2 —.945 (.595)
p 13
Constant 231 (.058) 174 (.092) 161 (.092)
Demographic controls Yes Yes
Observations 2,392 2,329 2,329
Pseudo-r? .058 068 069
AIC 3,184.754 3,090.659 3,089.964
BIC 3,202.093 3,125.178 3,130.237

Note. SE in parentheses. Coding of the variables: moving (I = yes) and Cross-Sectional Survey 2 (I = yes). We controlled for
the following demographics: age, gender, and mother tongue (German). Pseudo-r* was calculated following McKelvey and
Zavoina (1975). IMC = instructional manipulation check; AIC = Akaike information criterion; BIC = Bayesian information
criterion.

pages. An important point to note in this context is that the acceleration data from smartphones’
accelerometer are not affected by (steady) movement of a car or train. That is, respondents who are
sitting still in a cab or train are likely classified as nonmoving, while entering and exiting a vehicle
induces acceleration that would classify respondents as moving. One could argue that this definition
of moving is in line with our theoretical arguments since particularly active movement (as opposed
to sitting in a train) requires additional cognitive resources and coordinating multiple tasks. Never-
theless, we acknowledge that also passive movement (e.g., riding in a train) can cause distractions
that may divert the attention of respondents away from the survey task. Thus, future research could
aim at differentiating between these different types of movement, potentially by combining accel-
eration and GPS data.

To answer our third research question (i.e., how do respondents with different predicted motion
conditions differ with respect to response behavior?), we compared respondents with respect to a
variety of aspects. First, we observed that completion times are higher for moving respondents than
for nonmoving respondents. This was particularly the case for survey pages with item-by-item
questions, mirroring the findings of Hohne and Schlosser (2019). This result provides supporting
evidence that our lab-trained prediction model indeed identified respondents with different com-
pletion conditions in two smartphone surveys that were conducted in a field setting.

Second, in contrast to our expectation, we found only little differences when comparing predicted
moving and nonmoving respondents with respect to indicators of superficial responding (i.e., low
IRV, high IRV, primacy effects, and compliance with an IMC). Exceptions include a negative effect
of moving on high IRV and somewhat weaker primacy effects for moving respondents in
Cross-Sectional Survey 1. In combination with the low proportion of predicted movers, our findings
indicate that the portability of smartphones does not necessarily seduce respondents to carelessly
complete surveys on the move. However, considering the overall low proportion of predicted
moving respondents, these findings should be interpreted with caution. Also, we advocate for future
research on the relationship between motion conditions and response behavior in smartphone sur-
veys employing further indicators of superficial responding, such as break-offs and item nonre-
sponse (the occurrence of these response behaviors was negligible in both cross-sectional surveys of
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this study). Ideally, this research would study motion conditions over many web survey pages and
with samples that observe a sufficient number of examples for such outcomes.

This study can be extended with respect to the following limitations. First, it is important to note
that our prediction models were trained with data from a lab experiment (i.e., motion conditions
were varied in a controlled setting) with a rather small sample of university students and by using a
between-subject design. This poses the question of generalizability, that is, whether the lab-trained
(and cross-validated) RF generalizes to data that is collected in the field. However, while the
summary statistics of our acceleration features do show a higher maximum acceleration in the two
cross-sectional surveys, we do not observe severe shifts in the distributions of our features between
the different data sources (see the descriptive statistics in Tables 1 and 2). Nonetheless, it would be
worthwhile to collect further training data using a more heterogeneous sample and a less artificial
setting. Second, we only considered a binary outcome as the prediction objective, whereas studying
multiple levels of movements (e.g., nonmoving, moving slow, moving fast) might be instructive
when comparing response behaviors between motion groups. Note, however, that in our case,
refined motion conditions would have resulted in subgroups with even smaller numbers of respon-
dents. Third, predicted motion conditions could be studied from a longitudinal perspective (e.g., by
exploring sequences and/or changes of motion conditions during survey completion on the respon-
dent level over time). Relatedly, time dependencies between web survey pages could be considered
by, for instance, adding lagged variables that include information about the predicted motion
conditions of previous survey pages. Fourth, the cross-sectional surveys in this study measured only
a limited number of sociodemographic background variables that could be included when modeling
superficial responding. Detailed background information, ideally combined with larger sample
sizes, might not only be valuable for extending the set of control variables but also for studying
the prevalence of different motion conditions in different sociodemographic subgroups.

This study contributes to web survey research by proposing a prediction approach that enables to
study respondents’ motion conditions in smartphone surveys. In addition, it provided insights on the
prevalence of different motion conditions in two smartphone surveys and on the effects of motion
conditions on response behavior. Our prediction model for identifying moving and nonmoving
respondents—in combination with the SMotion tool (Héhne & Schlosser, 2019) for collecting
acceleration data—allows future research to analyze respondents’ completion conditions and to
extend this study in various ways. This includes, for instance, studying the effects of (various forms
and patterns of) active movement on break-offs and superficial responding in larger smartphone
surveys. In addition, major health-related surveys, such as the Health and Retirement Study and the
Survey of Health, Ageing, and Retirement in Europe, conduct fitness tests, such as balance and walk
tests. These tests are overseen by interviewers that monitor respondents’ compliance and perfor-
mance. The use of smartphone surveys, coupled with the collection of acceleration data and our
prediction approach, may allow validating compliance in a self-administered survey setting instead.
Documentation and code examples on how the prediction approach and the trained model from this
study may be used by future research are provided in the GitHub repository that accompanies this
article (https://github.com/chkern/survey-motion). So far, the usage of sensor data, in general, and
acceleration data, in particular, in smartphone surveys to explore respondent behavior is still in its
infancy. Thus, various research directions exist that could be addressed in the future to shed light on
the importance and implications of different completion conditions in smartphone surveys.

Data Availability

Data may be accessed on-site at the University of Mannheim by contacting the first author of this article (c.
kern@uni-mannheim.de).
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(Version 0.12.1) and xgboost (Version 1.2.0.1) packages. The mixed-effects models were fitted with the Ime4
package (Version 1.1-19; Bates et al., 2015).
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The supplemental material is available in the online version of the article.

Notes

1. Even though paradata and sensor data share many similarities (e.g., they can be measured via JavaScript
and inform about the survey completion process), it makes sense to distinguish both data types for the
purposes of this study. We therefore define sensor data as data that are specifically collected via built-in
sensors, such as accelerometers, of smartphones during the survey completion process.

2. Note that this was only observed for web survey pages with multiple questions but not for web survey pages
with one single question, indicating that question presentation (single or item-by-item) matters.

3. The International System unit for acceleration is meter per second squared (m/s>).

4. For a more detailed description of the setup of the lab experiment, see Hohne and Schlosser (2019).

5. The survey was conceptualized as smartphone survey, but some respondents (n = 937) took part using a
different device. These respondents were identified using the User-Agent-Strings that inform about device
properties, such as device type and model (see Callegaro, 2013).

6. The device type was detected at the beginning of the survey, and respondents who attempted to access the
survey using a different device than a smartphone were prevented from continuing the survey and asked to
use a smartphone.

7. Default settings are used for hyperparameters not listed.

8. Random forests and extremely randomized trees are implemented in caret (Version 6.0-81; Kuhn, 2018) in
one function (with the method being a tuning parameter).

9. We also considered item nonresponse as an additional indicator for superficial responding. Given the low
prevalence of item nonresponse, we report the corresponding results in Online Appendix C in the Online
Supplement of this article.

10. These results hardly change when using a different prediction method.
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