Exploring an Al-Powered Survey Interviewing Agent for Individuals Who Are Blind or Visually Impaired

Haomiao Jin <h.jin@surrey.ac.uk>

Lecturer in Health Data Sciences

School of Health Sciences, University of Surrey, United Kingdom

Outline

- Background and rationale
- Overview of our research project
- Key insights from our works so far
- Challenges & Potential Solutions
- Future steps and final thoughts

Research Team

- Project: Developing an AI-powered survey interviewing agent for people who are blind or visually impaired
 - Sabia Akram <u>sabia.akram@surrey.ac.uk</u>
 - Haomiao Jin <u>h.jin@surrey.ac.uk</u>
 - Jenny Harris jen.harris@surrey.ac.uk
- In collaboration with the Center for Economic and Social Research (CESR) at the University of Southern California

Blindness and Visual Impairment

- ICD-11 definition of visual impairment, based on presenting visual acuity (i.e., with corrective lenses)
 - Category 0: No or mild visual impairment better than 6/18
 - Category 1: Moderate visual impairment between 6/18 and 6/60
 - Category 2: Severe visual impairment between 6/60 and 3/60
 - Categories 3-5: Blindness worse than 3/60 or no light perception
- Blind or visual impairment (BVI): Categories 1-5
- Epidemiology
 - About 285 million worldwide (4.0%, WHO)
 - 90% living in LMIC
 - Over 80% aged 50+

Barriers for People with BVI to Engage in Digital Surveys

- Adapted from American Foundation for the Blind (AFB)'s report (<u>https://afb.org/research-and-initiatives/bdis-series</u>)
 - Inaccessible interfaces: existing digital platforms lack compatibility with assistive technologies like screen reader or braille displays
 - Unlabelled buttons and links (e.g., arrows instead of "Next"/"Previous")
 - Poor contrast, inappropriate colour schemes, small font sizes
 - Inaccessible formats, such as dropdown menu or visual based tests
 - Excessive time and cognitive load (matrix questions)
 - Frequent website updates
 - Reliance on assistance from sighted persons (privacy, social desirability bias)

Challenges for Researchers Who Like to Use Digital Surveys for People with BVI

- How to engage BVI individuals in digital surveys?
 - What technologies are useful
- Cost of technology development
- Customisation and reliability
 - Assistance for BVI → customisation → reduced standardisation
- Mode effect
 - Technology-Assisted assessment for BVI vs. other mode(s)
- Validity
 - Do instrument validated on the general population work for BVI?

Potential Benefits of Using LLM to Power a Survey Agent for People with BVI

- Conversational interaction deliver survey based on conversation
- Adaptive format adjust format for people with BVI
- Navigation through long and complex survey (hopefully!)
- Error handling and clarification
- Reduced reliance on assistance from sighted others
- Cost of using LLM for development is manageable/decreasing

A Research Project on Al-Powered Survey Agent for People with BVI

- Understand how people with BVI use technology
- Understand their past survey experiences
- Generate persona (typical users)
- Team members working with BVI personas, survey researchers and other key shareholders to:
 - Identify key design points/areas
 - Seek solutions
- Test the developed AI survey agent
 - Achieve the desired functionality
 - User acceptability, satisfaction and perceived ease of use
- At-scale test to examine:
 - Mode effect
 - Reliability and validity in conducting common instruments

Phase 1: One-on-one dialogue with individuals who are BVI (Ongoing)

- Target to talk with 30 people with BVI
 - Understand how people with BVI use technology
 - Understand their past survey experiences
 - Generate persona (typical users)
- What we learned so far:
 - People with BVI are amazingly tech-savvy
 - They rely on assistant technologies and have their own preference
 - LLM is being incorporated into some assistant technologies
 - JAWS+ChatGPT, NVDA+Claude (ask questions, summarise TV shows, general life assistant, supports daughter in her homework)
 - They primarily utilise verbal expression for communication
 - multi-sensory reading experience, hear and see, for people with some vision
 - Their experiences with digital surveys are not good

Experience of Surveys

- Difficulties with digital surveys, particularly with word limits on open-ended questions. "Would like the ability to use another app to draft my response".
- Matrix-type questions were impossible to understand and navigate on how to complete.
- If speech-based, would like "audible cues on when it starts and stops listening and then respond".
- "In a survey I press enter to mean next line, but it goes to next question".
- "I know 'enter' means next question".
- The need for simplicity and choice (e.g. one question per page, compatible with existing accessibility software, allow choice between typing and speech)

A preliminary technology roadmap

AI/LLM Engine

Questionnaire(s)

- Locally deployed? (for controllability, safety and privacy)
- Functionalities/features implemented by finetuning/fewshot learning with
 - Explicit instructions
 - Best practices
 - Examples of professional interviewing behaviours

Co-design Approach

- Co-design (or participatory design) is a research and development approach where end users actively contribute to the design process.
- Instead of designing for users, we design with users.
- It ensures the technology meets real-world needs by incorporating lived experiences and expert feedback.
- Particularly useful when developing accessible and inclusive technologies.

Who is involved in the Co-design process

- Blind & Visually Impaired (BVI) individuals
 - End users with firsthand experience of accessibility challenges.
- Survey researchers
 - Ensure methodological rigor and consistency.
- AI/LLM developers
 - Translate co-design insights into AI behaviour.
- Research team members
 - Organise the process in a structural way and translate findings into product

A preliminary technology roadmap

Think about solutions together

Challenges

- Many useful co-design tools (e.g., participatory systems mapping [PSM]) are visually based
 - Verbal brainstorming and structured discussions (well-planning is critical)
 - Text-based tool or use visual tool internally to the research team
- Balancing Accessibility with Standardisation in Survey Design
 - Surveys must follow standardised protocols for research validity, but BVI users may need additional clarification and flexible response formats.
 - Identify which aspects of surveys can be adapted without compromising reliability and validity.
 - Train the AI to offer clarifications neutrally while maintaining question integrity.
 - Work closely with survey researchers to define acceptable flexibility.
- Cognitive overload & information processing differences
 - Allow users to use their preferred assistant technologies (survey delivered through textbased interface)
 - Find solutions to complex question items (e.g., matrix items)
 - Fatigue management

A preliminary technology roadmap

Some Thoughts About Testing Plan

- Ensure the AI/LLM performs well as a survey interviewer
 - Does the AI read survey questions correctly?
- Verify the interface works seamlessly with assistive technologies
 - Does the survey interface work with screen readers?
 - Can users navigate, select, and input answers easily?
 - Are AI prompts clearly and paced appropriately for auditory comprehension?
- Identify and fix usability barriers for BVI users
- Gather user feedback to refine AI behaviour & accessibility features

Take-aways

- Al-powered survey interviewing agent has potentials
 - Conversational & adaptive format enhances accessibility for BVI individuals
 - Reduce reliance on assistance from sighted people
- A structured co-design approach
 - Engaging BVI users, survey researchers, and AI developers
 - Balancing accessibility with survey standardization is a critical challenge
 - Other challenges include assistive tech compatibility and cognitive load &fatigue management
- Next steps
 - More one-to-one dialogues with BVI individuals and co-design workshops
 - Develop and realise the technology
 - Thorough testing and continued iterations
- Final thoughts
 - By integrating AI with a co-design approach, we hope to improve survey accessibility for BVI individuals, contributing to better engagement of this hardto-reach population in research.

Thank You!

h.jin@surrey.ac.uk