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Abstract 

With the rise of smartphone use in web surveys, voice or oral answers have become a promising 

methodology for collecting rich data. Voice answers not only facilitate broader and more 

detailed narratives but also include additional metadata, such as voice amplitude and pitch, to 

assess respondent engagement. Despite these advantages, challenges persist, including high 

item non-response rates, mixed respondent preferences for voice input, and labor-intensive, 

manual answer transcription and coding. This study addresses these last two challenges by 

evaluating two critical aspects of processing voice answers. First, it compares the transcription 

performance of three leading Automatic Speech Recognition (ASR) tools—Google Cloud 

Speech-to-Text API, OpenAI Whisper, and Vosk—using voice answers collected from an open-

ended question on nursing home transparency that was administered in an opt-in online panel 

in Spain. Second, it evaluates the efficiency and quality of coding these transcriptions using 

human coders and GPT-4o, a Large Language Model (LLM) developed by OpenAI. We found 

that each of the ASR tools has distinct merits and limits. Google sometimes fails to provide 

transcriptions, Whisper produces hallucinations (false transcriptions), and Vosk has clarity 

issues and high rates of incorrect words. Human and LLM-based coding also differ 

significantly. Thus, we recommend using several ASR tools for voice answer transcription and 
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implementing human as well as LLM-based coding, as the latter offers additional information 

at minimal added cost.  

 

Keywords: Automatic Speech Recognition (ASR), Google’s Cloud Speech-to-Text API, GPT-4o, 

Large Language Model (LLM), Voice answer transcription, Vosk, OpenAI Whisper 

 

 

1. Introduction 

Web surveys offer notable benefits for both respondents (flexibility in terms of time and 

location) and researchers: especially, timeliness, cost-efficiency (Callegaro et al. 2015), and 

technological adaptability (Conrad et al. 2021; Struminskaya et al. 2020), enhanced by growing 

smartphone participation rates (Gummer et al. 2019, 2023; Peterson et al. 2017; Revilla et al. 

2016). In particular, built-in microphones facilitate the administration of voice or oral answers 

to open-ended questions (Revilla 2022; Schober et al. 2015). 

Requesting voice answers in web surveys offers potential benefits, again for both 

researchers and respondents (Revilla 2022). From a researcher’s perspective, answers gathered 

through voice recording in web surveys enable the collection of comprehensive information by 

triggering open narrations (Gavras & Höhne 2022), allowing respondents to articulate their 

thoughts more freely. Compared to written answers, oral answers tend to contain more words 

and characters (Gavras et al. 2022; Höhne & Claassen 2024; Revilla et al. 2020), while also 

taking less time (Revilla et al. 2020). Moreover, oral answers encompass a broader range of 

topics than written ones (Gavras et al. 2022) and are associated with higher levels of validity 

(Gavras & Höhne 2022). The meta-data included in oral answers, such as voice amplitudes and 

pitches, can be utilized to gauge respondents’ interest levels during survey completion (Höhne 

et al. 2024), introducing an additional dimension to the analysis of answer behavior and data 

quality. From a respondent perspective, answering through voice recordings might be faster and 

less burdensome than typing in a text box, especially on smartphones. Additionally, this method 

may feel more natural and enjoyable, as many people regularly use voice functions, including 

those of voice assistants and instant messengers, in their daily lives (Deloitte 2018; Revilla et 

al. 2018). 

Despite these advantages, previous research reports item non-response rates between 25% 

and 60% (Gavras et al. 2022; Revilla et al. 2020; Revilla & Couper 2021). Moreover, even 

though most respondents find it easy to answer through voice recording, only 39% reported 

liking it (Revilla & Couper 2024). Another hurdle linked to oral answers is the need to transcribe 

them into text for substantive analysis. In theory, Automatic Speech Recognition (ASR) systems 

can process voice input directly and automatically code this input to trigger specific actions, 

such as in Customer Relationship Management (CRM) systems. However, these systems 

usually have limited functionality and can only directly interpret a narrow range of inputs (e.g., 

brief commands or simple “yes” or “no” answers). Thus, at this time, they lack the ability to 

handle complex, narrative answers. Consequently, such systems typically fail to extract the 

detailed information researchers seek from narrative open-ended answers. Coding such answers 

often requires careful consideration of multiple aspects and may involve repeated review. 

Therefore, a two-step process – first transcribing the answers and then coding them – is usually 

necessary.  
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This requirement introduces an additional stage to data processing that must be accounted 

for, as transcriptions typically entail substantial time and personnel effort. Transcribing audio 

files typically takes three to eight times longer than the original voice input (McMullin 2023). 

ASR tools present a potential solution to bypass effortful manual transcription through 

automatic transcription. Despite claims of their effectiveness across various languages, there 

are limited empirical demonstrations testing ASR tools, particularly within the context of web 

surveys (see Section 2).  

Once transcribed into text, the oral answers can be coded similarly to conventional written 

answers. While human coding has often been employed (Höhne & Claassen 2024; Höhne et al. 

2025; Lenzner et al. 2024; Revilla et al. 2020, Revilla & Couper 2021), it is labor- and time-

intensive and inconsistencies can arise as different coders may assign different codes to the 

same answers. To address these challenges, some studies focusing on open-ended narrative 

questions have opted for automatic coding approaches utilizing Natural Language Processing 

(NLP) and machine learning, such as Structural Topic Modeling (STM; Roberts et al. 2014) 

and Bidirectional Encoder Representations from Transformers (BERT; Landesvatter & Bauer 

2024). However, these methods have their own limitations. For example, STM does not 

consider the word order and grammatical structure of responses, which may lead to inaccuracies 

or a lack of interpretive depth (Barde & Bainwad 2017). BERT models require a sufficient 

number of open-ended answers for model fine-tuning (Gweon & Schonlau 2024).  

Recent advances in Large Language Models (LLMs) introduce new possibilities for 

survey researchers and practitioners for coding open-ended answers. In particular, GPT-4o, the 

most recent LLM of OpenAI when this research was conducted, can generate coherent text 

based on user input. This allows sophisticated and efficient answer coding, potentially reducing 

coding time, while maintaining interpretative richness (OpenAI et al. 2024). Some studies 

already compared GPT to human-based coding (see Section 2.3). However, empirical evidence 

remains limited. To our knowledge, a comparison of human and GPT-based coding of 

automatically transcribed voice answers has not been conducted yet. Thus, this study has two 

main goals:  

1) Providing new empirical evidence about the performance of three leading ASR tools 

to transcribe voice answers to an open-ended question on nursing homes transparency that were 

collected through a web survey administered in the Netquest online panel1 in Spain in 2024: 

Google’s Cloud Speech-to-Text API2, OpenAI Whisper3, and Vosk4. Google and Whisper were 

chosen because these are the two ASR tools that have been compared in previous research on 

voice answer transcription (Höhne et al. 2025; Meitinger et al. 2024). Vosk was included 

because it has been used in previous studies to transcribe voice answers for substantive analysis 

(Revilla and Couper 2023). Additionally, all three tools offer several advantages (see Section 

2.1), including low or no costs and Spanish language capability.  

2) Comparing different ways to code these automatically transcribed voice answers: 

human and LLM-based coding (GPT-4o model), using two different parameter settings (see 

Section 3).  

 

 
1 www.netquest.com 
2 https://cloud.google.com/speech-to-text  
3 https://openai.com/index/whisper/  
4 https://github.com/alphacep/vosk-api/ 

http://www.netquest.com/
https://cloud.google.com/speech-to-text
https://openai.com/index/whisper/
https://github.com/alphacep/vosk-api/
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2. Background 

2.1 Performance of Google, Whisper, and Vosk 

When evaluating ASR tools, key factors, such as accuracy under various conditions (e.g., noise 

levels and accents), typically measured by Word Error Rate (WER) and processing speed, are 

essential. These criteria help to assess how well different ASR tools handle diverse audio inputs 

and environmental conditions. 

The Google Cloud Speech-to-Text API is a commercial tool powered by its Universal 

Speech Model, which relies on a family of advanced speech models with two billion parameters, 

trained on 12 million hours of speech data and 28 billion sentences in over 300 languages 

(Gladia5). This extensive training enables it to excel in handling diverse accents and languages, 

currently supporting more than 125 languages (Cloud Compiled6). Furthermore, Google’s API 

performs well even when background noise is present, and is highly customizable through 

features like model adaptation, which allow it to recognize domain-specific terminology, 

enhancing its flexibility and accuracy for specialized applications (Gladia). 

Whisper has been trained on 680,000 hours of multilingual and multitask data from online 

sources. Although the model was initially trained on 98 languages, only 50 languages (with a 

WER lower than 50%) are currently available (Slator7). Whisper can operate both locally on 

devices without internet access and online via its API. It has gained recognition for its accuracy, 

especially for difficult audio with background noise or multiple speakers and languages. 

Research found that Whisper performs well in terms of WER (Radford et al, 2023), 

outperforming both the Google API (Chen et al., 2024) and Vosk (Trabelsi et al., 2024), 

particularly in challenging scenarios. It also offers quicker processing time compared to the 

Google API when using Whisper’s model “Small” through the API (Chen et al., 2024). Using 

Whisper locally is free of charge, and its API is usually cost-effective for “smaller projects” 

(Kenility8). However, Whisper may not perform as well as other specialized models for cleaner, 

simpler datasets and is prone to “hallucinations,” as the model sometimes inserts extraneous 

words or phrases not present in the audio (Gladia; Slator).  

Vosk is an open-source ASR tool that leverages deep learning models along with 

optimized feature extraction techniques to transcribe audio into text. Unlike many cloud-based 

ASR tools, Vosk is designed to operate locally offline (Medium9). This makes it ideal for 

privacy-focused applications or where connectivity is unreliable. Thus, Vosk is widely used in 

offline scenarios and is praised for its efficiency and flexibility. It offers a good balance between 

performance and cost, although it may not reach the high accuracy levels of other tools for more 

complex or noisy audios. However, compared to Whisper, Vosk has been found to require fewer 

manual adjustments to ensure transcription accuracy (Toolify10). 

 

2.2 Testing ASR tools using survey answers provided through voice 

When focusing on answers to open narrative survey questions collected through voice 

recording, very few empirical studies exist. However, voice answers by survey respondents may 

 
5 https://www.gladia.io/blog/openai-whisper-vs-google-speech-to-text-vs-amazon-transcribe 
6 https://cloudcompiled.com/2020/07/28/transcription-api-comparison/  
7 https://slator.com/resources/is-whisper-the-best-speech-to-text-software/  
8 https://www.kenility.com/blog/technology/rise-ai-transcription-whisper-vs-google-speech-text  
9 https://fahizkp.medium.com/vosk-a-comprehensive-guide-to-open-source-speech-recognition-3e634fc8d713  
10 https://www.toolify.ai/ai-news/enhanced-audiototext-comparison-vosk-vs-whisper-in-subtitle-edit-55557  

https://www.gladia.io/blog/openai-whisper-vs-google-speech-to-text-vs-amazon-transcribe
https://cloudcompiled.com/2020/07/28/transcription-api-comparison/
https://www.gladia.io/blog/openai-whisper-vs-google-speech-to-text-vs-amazon-transcribe
https://slator.com/resources/is-whisper-the-best-speech-to-text-software/
https://www.kenility.com/blog/technology/rise-ai-transcription-whisper-vs-google-speech-text
https://www.gladia.io/blog/openai-whisper-vs-google-speech-to-text-vs-amazon-transcribe
https://slator.com/resources/is-whisper-the-best-speech-to-text-software/
https://fahizkp.medium.com/vosk-a-comprehensive-guide-to-open-source-speech-recognition-3e634fc8d713
https://www.toolify.ai/ai-news/enhanced-audiototext-comparison-vosk-vs-whisper-in-subtitle-edit-55557
https://www.gladia.io/blog/openai-whisper-vs-google-speech-to-text-vs-amazon-transcribe
https://cloudcompiled.com/2020/07/28/transcription-api-comparison/
https://slator.com/resources/is-whisper-the-best-speech-to-text-software/
https://www.kenility.com/blog/technology/rise-ai-transcription-whisper-vs-google-speech-text
https://fahizkp.medium.com/vosk-a-comprehensive-guide-to-open-source-speech-recognition-3e634fc8d713
https://www.toolify.ai/ai-news/enhanced-audiototext-comparison-vosk-vs-whisper-in-subtitle-edit-55557
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differ from the audio material usually used to compare the performance of ASR tools (see 

section 2.1). Several parameters that may impact performance are not under the researcher’s 

control, including volume, speed of speech, accent, tone, or lexical structure. In particular, voice 

answers can be affected by background noise – respondents can answer whenever and wherever 

they want (Mavletova, 2013) – potentially lowering transcription accuracy (Pentland et al., 

2023). Additionally, voice answers from smartphones are comparatively short – sometimes 

lasting only a few seconds – but ASR performance improves with the speech input length 

(Proksch et al., 2019). 

Meitinger et al. (2024) explored the transcription accuracy of oral answers from the 

Longitudinal Internet Studies for the Social Sciences (LISS) panel in the Netherlands. 

Employing the Questfox tool11, that uses the Google API (transcription took place in 2020), 

they observed that background noise and the presence of third parties compromised 

transcription accuracy. Respondent characteristics, such as age and education, were not 

associated with transcription accuracy. Höhne et al. (2025) investigated the performance of 

Google API and Whisper using oral answers from a German non-probability online panel 

(transcription took place in 2024). In contrast to Chen et al.’s (2024) finding that Whisper is 

faster than Google, they report that Google processed and returned transcripts faster than 

Whisper (operated locally). However, this speed comes at the cost of more errors. The Google 

API produced around 20% transcriptions of insufficient quality with major errors, versus 

around 5% for Whisper. 

The studies conducted by Meitinger et al. (2024) and Höhne et al. (2025) provide key 

empirical evidence. However, they considered a limited set of languages and ASR tools. 

 

2.3 Comparing human versus Generative Pre-trained Transformer (GPT) coding 

Recent studies have compared human and automated coding through OpenAI GPT-3.5 and 

GPT-4o models, highlighting their advantages and limitations. Automated coding with these 

models offers notable benefits in terms of accuracy, efficiency, and replicability (Theelen et al., 

2024; Arlinghaus et al., 2024; Liu & Sun, 2023). Research has demonstrated the ability of these 

models to code and identify themes and patterns with high precision, often surpassing human 

coders in agreement rates, uncovering nuanced insights, and reducing bias while maintaining 

neutrality and consistency (Fuller et al., 2024; Liu & Sun, 2023). Furthermore, using these 

models significantly reduces the time and resources required for coding (Arlinghaus et al., 

2024; Fuller et al., 2024).  

However, OpenAI GPT also presents qualitative coding limitations, especially with 

techniques like axial coding (Saldaña, 2015), where tailored and refined prompts (i.e., written 

instructions for the model to guide its responses) are required to enhance GPT’s task 

understanding (Theelen et al., 2024). OpenAI GPT models often require extensive context to 

produce meaningful codes that align with underlying theories (Fuller et al., 2024). Additionally, 

they may overgeneralize themes or overlook implicit nuances and emotions that human coders 

usually recognize (Liu & Sun, 2023). 

Overall, previous research suggests that OpenAI GPT coding might be a promising 

solution, but important limitations remain. Additionally, while human coding can largely vary 

across coders, leading to low interrater reliability (IRR), LLM-based coding can also exhibit 

 
11 https://questfox.online/en/questmanagement 

https://questfox.online/en/questmanagement
https://questfox.online/en/questmanagement
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variability. Performance depends first on the specific LLM used. In particular, comparisons 

between GPT-3.5 and GPT-4o indicate that GPT-4o produces better explanations and higher 

agreement (Arlinghaus et al., 2024; Lee et al., 2024). Even when using the same LLM, the 

performance can vary depending on the exact coding task, the language of the text to be coded, 

and the formulation of the prompts. Moreover, GPT-based coding relies on several parameters, 

especially the “temperature,” which influences the model’s “creativity” or “focus.” A lower 

temperature produces more deterministic and focused outputs, increasing the likelihood of 

generating consistent coding when using the same prompts and data. In contrast, a higher 

temperature results in more creative and diverse outputs but reduces reproducibility (Marion, 

2024).  

Furthermore, new challenges may arise when applying GPT-based coding to ASR-based 

transcriptions. Indeed, as discussed earlier, ASR tools can introduce errors, such as 

misinterpreted words, grammatical issues, or even hallucinated content. These issues can 

exacerbate the limitations of GPT coding: inaccurate or poorly organized transcriptions may 

hinder GPT’s ability to produce accurate and meaningful coding outputs. Fuller et al. (2024) 

highlight the importance of data cleaning and crafting effective prompts. Untidy transcriptions 

from ASR tools, such as transcriptions that include spelling or punctuation errors and 

inconsistent capitalization, can lead to coding errors and inaccuracies, undermining the 

accuracy of coding results. 

 

3. Research questions and contribution 

This study’s first research question investigates the effectiveness of three leading ASR tools 

(Google Cloud Speech-to-Text, OpenAI Whisper, and Vosk) in transcribing oral answers (in 

Spanish) from web surveys: 

 

RQ1: How do the ASR tools perform across various dimensions?  

 

By addressing RQ1, we extend the work by Meitinger et al. (2024) and Höhne et al. 

(2025). First, we consider another language. While Meitinger et al. (2024) considered Dutch 

and Höhne et al. (2025) considered German, we consider Spanish, a widely spoken language 

for which many large language datasets exist, which eases creation of ASR tools. Second, we 

expand the number of ASR tools under investigation, by not only exploring Google’s Cloud 

Speech-to-Text API and OpenAI Whisper, but also Vosk. Third, we use more recent versions of 

the tools. Specifically, in the study by Meitinger et al. (2024), data collection and oral answer 

transcription occurred in 2020. Given the rapid evolution of ASR tools, this raises questions 

about the ongoing validity of the results. Importantly, this is an exploratory evaluation, so we 

do not have specific expectations about the relative performance of the ASR tools.  

We consider different aspects of performance of the ASR tools: whether a transcription is 

obtained, the number of characters, words, and sentences in the transcriptions, their clarity (i.e., 

how understandable and readable are transcriptions), presence of different kinds of problems, 

and validity of the answers (i.e., they align with the question and provide substantive 

information; see Section 4.4). Differences in the words used and meaning across pairs of ASR 

tools are also investigated. A key limitation of this study is that we do not have direct access to 

the original audio files of respondents, a restriction implemented to minimize data protection 
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risks. Thus, we cannot determine the “true” values (what respondents actually said), limiting 

performance evaluation to self-evident aspects. For example, incomplete sentences can be 

identified if they only include a subject without a verb, but a missing adjective (e.g., “very”) 

cannot be detected, as the sentence remains functional. 

The second research question investigates different coding procedures: 

 

RQ2. How similar or different are the codes of transcribed responses generated by a 

human and the OpenAI GPT-4o model? 

 

By addressing RQ2, we contribute to the limited body of research comparing human and 

LLM-based coding. We particularly focus on the respective performance in coding information 

from transcriptions of oral answers to narrative questions in web surveys. Since the results of 

GPT-4o depend on the parameter configuration, in particular the temperature12, we compare 

two GPT-4o outputs: one using the default temperature (0.7), and another setting the 

temperature to 0. 

 

4. Method and data 

This study uses a subset of the data collected in the framework of a pre-registered study 

investigating:  

1) Whether the provision of extra incentives – given beyond the baseline incentive all 

respondents receive for their participation – to those answering experimental questions through 

voice increases the proportion of voice answers across groups of respondents varying in their 

likelihood of using voice.  

2) The association between these additional incentives and the quality of answers.  

For information about the full study design, we refer to Höhne, Revilla and Couper 

(2024). This section focuses on the aspects relevant to the current study. 

 

4.1 Questionnaire 

The questionnaire included over 80 questions, administered via a web survey optimized for 

mobile devices but also accessible on PCs. Due to routing, no respondent answered all 

questions. The full questionnaire and its English translation are available in SOM1. 

Respondents could skip questions, except those controlling quotas or tailoring subsequent 

questions.  

The survey primarily focused on citizens’ perceptions of nursing homes in Spain but also 

included questions on political opinions, respondent characteristics, and web survey 

completion, among others. 

This paper focuses on one open-ended narrative question13 (see question 

“WHYTRANSP_EXP” in SOM1) in which respondents were asked to explain why they 

 
12 Other settings could be adjusted, primarily: max_tokens (Limit on response length), top_p (Nucleus sampling, 

also known as “cumulative probability”), frequency_penalty (Penalty for token frequency), presence_penalty 

(Penalty for token presence), stop (Stop sequences), and logit_bias (Adjustment of probabilities for specific 

tokens). 
13 Although the survey included a second open-ended narrative question with a request for voice answer, we focus 

on the data from WHYTRANPS_EXP, because we do not expect differences in transcription performance between 

the two questions, as they share the same structure and topic. Additionally, Höhne et al. (2025) did not find 

differences in performance across their two questions. 
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selected a given answer in a prior closed question on the amount of information they think 

nursing homes in Spain provide. 

For this question, a push-to-voice design was employed, where participants were initially 

asked to answer through voice recording. In a follow-up, respondents skipping the question 

were offered two options: record their answer or type it in a text-box. Since no differences are 

expected in the transcription performance, to reduce coding time and effort, we do not analyze 

the voice answers from the follow-up. 

 

4.2 Data collection 

Data was collected in the Netquest opt-in online panel in Spain between February 29, 2024, and 

March 22, 2024. To record respondents’ oral answers, the WebdataVoice tool (Revilla et al. 

2022), that works across devices (PCs, tablets, and smartphones) and mobile operating systems 

(Android and iOS), was used. Respondents were able to listen to their recordings before 

submitting them, and delete and re-record if needed. To minimize data disclosure risks, 

Netquest immediately transcribed the oral answers into text using the three ASR tools. These 

transcriptions were then forwarded to the projects’ Ethics Advisor for manual review. In very 

few cases where unsolicited personal information was present, the advisor removed this 

information before sharing the final dataset with the research team.  

We used quotas for gender and age (crossed) and education, to match the adult online 

population in Spain (under 75) according to the National Statistics Institute (see SOM1). Of the 

11,076 panelists invited to the survey, 3,237 started it but 286 abandoned the survey before 

getting to the question of interest in this study and another 689 were excluded (e.g., for not 

giving their explicit consent to participate or for exceeding the quotas). Overall, 2,262 panelists 

got to the open-ended question under investigation. Of those, 1,403 panelists did not have any 

transcriptions, indicating they either initially skipped the question or encountered issues with 

their voice files. This leaves 859 panelists for our statistical analyses (those with at least one 

transcription). 

The average age of these 859 panelists is 48 years, 51% of them are female, and 36% 

have a higher education degree. On average, they have been in the Netquest panel for 6.7 years 

(median = 6.4) and have completed 195 surveys (median = 170). About 21% completed the 

survey with a PC, 2% with a tablet, and 78% with a smartphone. 

 

4.3 Transcriptions 

The transcriptions of the audio files were done with the three ASR tools in September 202414. 

For each tool, specific decisions were required regarding the models and parameters used. 

Detailed information about the configuration is provided in SOM2. Variations in the 

configuration can lead to different transcription outcomes, especially for the Google API. For 

this tool, the wide range of configuration options makes it more challenging to identify a set of 

parameters performing consistently well across audio files. Netquest observed that certain audio 

files failed to generate transcriptions with some settings but succeeded when adjusting the 

settings. Conversely, files that produced transcriptions with the initial settings sometimes failed 

 
14 Initial transcriptions were conducted immediately after data collection. However, not all audio files were 

included. Upon detecting this issue, Netquest implemented again all transcriptions: we use these new 

transcriptions. 

https://www.netquest.com/
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after changes were made. Thus, Netquest tested multiple configurations for the Google API on 

a small subset of audio files and selected the settings that delivered the best performance 

metrics. In contrast, Netquest used the default settings for both Whisper and Vosk, as they 

performed reasonably well with these configurations. Since this part of the work was 

outsourced, our ability to control the process was limited. 

 

4.4 Coding of the transcriptions 

We extracted various relevant information from the transcriptions, as presented in Table 1. The 

coding was organized in two blocks: Block 1 focuses on aspects coded for each ASR tool 

individually. Block 2, in contrast, addresses aspects that directly compare pairs of ASR tools 

(“Google-Whisper,” “Whisper-Vosk,” and “Vosk-Google”).  

 

Table 1. Aspects coded 

Block Aspect coded Coding method What was coded 

1 Transcription 

provided 

R script Binary variable. 1 indicates a transcription is 

provided. Any form of answer is considered, 

even nonsensical ones. We only consider 

respondents with a transcription for at least one 

of the three ASR tools, because we are 

interested in the relative performance of the 

three tools. The remaining aspects are coded 

for cases where an answer was observed with a 

given ASR tool. 

1 Answer 

length 

R script Measured using three metrics: number of 1) 

characters, 2) words, and 3) sentences. 

1 Clarity Human & GPT-

4o 

Evaluates how understandable and readable the 

transcribed text is. Three levels are considered: 

1) content is largely unclear (“not clear at all”), 

2) some parts are unclear, but the overall 

transcription is usable (“clear”), and 3) content 

is very clear (“very clear”). 

1 Presence of 

different types 

of problems 

Human & GPT-

4o 

Three binary variables are used to code 

problems: 1) missing words or incomplete 

sentences, 2) words added by mistake or part of 

the answer is repeated, and 3) misspelling, 

grammatical errors, or wrong words (i.e., that 

do not make sense in the context of the text).  

1 No problem R script Binary variable with value 1 if the three 

previous measures (missing, added, and wrong 

words) are 0, and value 0 otherwise. 

1 Valid answers  Human & GPT-

4o 

Following Revilla and Couper (2023), we 

evaluate the validity of each transcription. 

Nonvalid answers include nonsense, answers 

not in line with the question topic, and non-

substantive answers (e.g., “don’t know” or “no 

opinion”). 
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Table 1. Continued 

Block Aspect coded Coding method What was coded 

2 Number of 

different 

words 

R script For each respondent, we count the number of 

words that differ between each pair of ASR tools 

(i.e., how many words appear in only one of the 

two transcriptions?). For example, if Vosk 

transcribes “I have a car” and Whisper 

transcribes “I have a bike,” the difference is two, 

as each transcription contains a unique word (car 

and bike, respectively).  

2 Percentage of 

different 

words 

R script To contextualize these differences in relation to 

the overall length of each answer, we also 

compute, for each respondent and pair of ASR 

tools, the percentage of different words, by 

dividing the number of different words by the 

total number of words in both transcriptions 

combined and multiplying by 100. For the 

example on car and bike, it would be 

2/8*100=25%. 

2 Similarity of 

meaning 

Human & GPT-

4o 

Assesses how closely the meanings of each pair 

of transcriptions align. Three levels are 

considered: 1) the meaning of the transcriptions 

differs a lot for some parts (“not similar at all”), 

2) the meaning is not exactly the same, but it is 

quite similar (“partly similar”), and 3) the 

meaning is identical (“very similar”). 

 

Objective aspects (e.g., number of words) were extracted using R version 4.3.1 (R Core 

Team, 2023; script available in OSF). For subjective aspects, we use (and compare) both human 

coding and GPT-4o coding, fixing the temperature to 0 and using the default setting (0.7). 

Human coding was done in the last trimester of 2024 by a native Spanish speaker, following 

detailed guidelines (see SOM3). GPT-based coding took place in January and February 2025. 

Before conducting the full GPT-based coding, we first tested different approaches on a small 

subset of transcriptions, focusing primarily on prompt formulation. We began with prompts that 

closely matched the human coding guidelines, using the same examples. As we identified 

issues, we refined the prompts accordingly, especially to improve alignment between GPT’s 

decisions and those of the human coder in cases where a specific aspect was not explicitly 

addressed in the human coding guidelines. For instance, when assessing clarity, we added the 

following instruction, because GPT initially tended to classify transcriptions as unclear when 

only minor punctuation errors were present: “Do not lower your rating if the transcription has 

only minor punctuation issues”. 

We also experimented on a subset of cases with different ways of sending the data to 

GTP-4o. First, we sent it all at once, expecting this approach to be simpler, faster, and more 

cost-effective, as pricing depends on the length of the texts sent to GPT. Thus, repeating the 

same prompt for each transcription increases costs. However, this method led to a reduced 
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proportion of coded transcriptions. For instance, if we sent 30 transcriptions at once, GPT failed 

to provide a code for some of them. Consequently, we opted to process the data incrementally, 

sending three transcriptions at a time and repeating the prompt as needed until all transcriptions 

were coded. Since we still had missing codes, we ultimately decided to send the requests one 

at a time. The final codes were generated by GPT-4o in 228 minutes with a temperature of 0 

and in 219 minutes using the default temperature. The Python code (including the exact 

prompts) used for coding with GPT-4o can be found in SOM4. 

 

4.5 Analyses 

The analyses were performed using R 4.3.1 (R Core Team, 2023; script available in OSF).  

To answer RQ1, we evaluate each ASR tool for the different aspects coded in Block 1. 

We implement descriptive analyses of aspects that help to assess the quality of each 

transcription. For numeric variables, we report means, while for categorical and binary 

variables, we report proportions, expressed as percentages. With the exception of the first 

indicator (Transcription provided), we report the results for all participants for whom a 

transcription was obtained (Transcription provided = 1). However, given the substantial 

differences in the number of cases with a transcription across the ASR tools, we also conduct 

additional analyses focusing exclusively on cases where all three ASR tools produced a 

transcription. We then compare these tools: 1) By computing the differences between means or 

proportions for all pairs of ASR tools (“Google-Whisper,” “Whisper-Vosk,” and “Vosk-

Google”) for each of the aspects in Block 1, and test whether these differences reach 

significance. 2) By analyzing the aspects in Block 2 that directly compare the ASR tools. For 

the number and percentages of different words, we report the average over all respondents with 

a transcription for each pair of ASR tools.15 In SOM5, we report the results when focusing only 

on those with a transcription for all three tools. For meaning similarity, we report the proportions 

of transcription pairs with either partial or full meaning overlap. We conduct t-tests when 

comparing means and McNemar tests when comparing proportions. We report significant 

differences at the 5% level.  

To address RQ2, we compare human and GPT-4o coding, when using the default 

temperature and temperature 0. Lowering the temperature is expected to reduce variation in 

coding but may also limit the model’s creativity, potentially leading to lower performance, 

particularly in a complex coding task, such as the one examined in this study. The comparison 

is first conducted by replicating the analyses from RQ1, excluding the variables created directly 

in R, and testing whether the results change when the coding is performed by GPT-4o, with 

temperature 0.7 and 0, instead of by a human. Thus, the emphasis is no longer on differences 

across ASR tools but on whether, for a given ASR tool, the coding method produces significant 

differences. We again use McNemar tests, setting the significance level at 5%. Second, we 

compute two common measures of IRR: 1) Percentage agreement: proportion of instances in 

which two “coders” (human versus GPT with default temperature, human versus GPT with 

temperature 0, and GPT with default temperature versus GPT with temperature 0) produce the 

same coding outcome. 2) Cohen’s Kappa: a more robust IRR measure that adjusts for agreement 

 
15 We also computed the same number and percentage of different words excluding words that have no strong 

meaning (option “stopwords = TRUE” of the R library stopwords). The overall patterns remain the same (see 

SOM6). 
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by chance, taking values between -1 and 1 (negative values indicate an agreement worse than 

chance, 0 reflects chance-level agreement, and positive values indicate agreement better than 

chance).  

 

5. Results 

5.1 Performance to the ASR tools (RQ1) 

Table 2 presents the results for the indicators in Block 1. The “Measure” columns present the 

percentage or average per group, while the “Differences” columns show the differences 

between pairs of ASR tools for each indicator, including the results of significance tests for 

these differences. 

Table 2. Comparing the three ASR tools (Block 1, human coding) 

  Measure Differences 

Google Whisper Vosk Google-

Whisper 

Whisper

-Vosk 

Vosk-

Google 

Transcription 

provided 

% Provided 
74.0 99.8 90.0 -25.7* 9.8* 15.9* 

Length # 

Characters  
285.0 309.9 385.6 -24.9  -75.7* 100.6* 

# Words  51.1 54.9 68.7 -3.8 -13.8* 17.6* 

# 

Sentences  
1.4 3.3 2.3 -1.8* 0.9* 0.9* 

Clarity % Clear  4.7 21.8 71.9 -17.1* -50.1* 67.2* 

% Very 

clear  
94.2 72.7 10.7 21.5* 62.0* -83.4* 

Problems % Missing 8.6 19.2 13.7 -10.5* 5.4* 5.1* 

% Added 6.6 28.5 13.2 -21.9* 15.3* 6.6* 

% Wrong 10.5 5.3 90.3 5.3* -85.0* 79.8* 

% No 

problem 
76.9 57.4 7.8 19.5* 49.6* -69.1* 

Valid % Valid 96.7 79.6 93.8 17.1* -14.2* -2.9* 
Note. Total number of observations for “Transcription provided” is 859. The other indicators are only coded for 

those respondents where an answer was available (N = 636 for Google, N = 857 for Whisper, and N = 773 for 

Vosk). # stands for average numbers. * p < 0.05. 

 

These results indicate a potential issue with transcription coverage for Google. Of the 859 

respondents for whom we received transcriptions from at least one of the ASR tools, only 74.0% 

have a transcription from Google. SOM7 compares the 142 voice recordings that lack a 

transcription in Google but have transcriptions in both Whisper and Vosk to the full set of 

transcriptions, to learn more about their characteristics. This comparison shows that the files 

with missing Google transcriptions are longer than average and exhibit more missing words in 

Whisper and more added words in Vosk, while remaining similar in terms of clarity and valid 

responses. Thus, the main issue might be related to how Google handles longer voice 

recordings, and the various parameters that need to be configured in Google.  

When Google provides a transcription, however, it performs strongly in terms of clarity, 

achieving 94.2% of very clear transcriptions and demonstrating low levels of detected missing, 

added, or incorrect words. Overall, 76.9% of Google transcriptions showed no problems, and 

96.7% of its transcriptions were considered valid answers. 
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Whisper, in contrast, provides transcriptions for 99.8% of these respondents, but has high 

levels of missing (19.2%) and added words (28.5%), and low rates of valid answers (79.6%). 

These results support the notion of hallucinations, which inflate answer rates while reducing 

valid answers. Even when focusing solely on cases with transcriptions available across all three 

tools – thereby excluding fully hallucinated transcriptions – the number of added words remains 

significantly higher than for the other ASR tools (19.9%, see SOM5). Additionally, while the 

percentage of valid answers increases, it still remains significantly lower than for the other tools 

(88.4%). 

Vosk displays an intermediate level of transcriptions (90.0%), likely closer to the 

percentage of recordings containing intelligible audio (true answer rate). Among respondents 

with a transcription, Vosk produces the longest outputs in terms of characters and words. 

However, due to punctuation issues (with Vosk providing almost no periods or commas), this 

increased length does not translate into a higher sentence count. These punctuation issues 

contribute to its low clarity, with only 10.7% of transcriptions rated as very clear. This is also 

associated with a very high rate of incorrect words (90.3% of the transcriptions). For instance, 

since the question asked about the amount of information provided by nursing homes, many 

respondents used the word “información” (Spanish for “information”) in their answers. 

However, Vosk frequently mis-transcribed this as “en formación” (Spanish for “in training”). 

Although the mistake was clear, it disrupted the processing of the transcriptions. 

When comparing pairs of ASR tools, fewer significant differences are observed between 

Google and Whisper compared to other pairs. Nonetheless, Google and Whisper still differ 

notably with respect to most indicators, including clarity and answer validity. Whisper and Vosk 

as well as Vosk and Google show significant differences across all indicators. The size of these 

differences is usually large. 

Next, Table 3 presents the results for Block 2. Now, the “measure” columns indicate the 

value of each measure for each pair of ASR tools (e.g., percentage of partly similar meaning 

between Google and Whisper), while the “differences” columns show differences between pairs 

(e.g., percentage of partly similar meaning between Google and Whisper minus percentage of 

partly similar meaning between Whisper and Vosk). 

 

Table 3. Comparing pairs of tools (Block 2, human coding)  

  Measure Differences 

Google-

Whisper 

Whisper-

Vosk 

Vosk-

Google 
GW-WV WV-VG VG-GW 

Different 

words 

# Diff. 

words 
17.5 37.4 23.4 -19.9* 14.0* 5.9* 

# 

Percentage 

diff. words 

out of total  

18.7 33.0 24.2 -14.3* 8.8* 5.5* 

Similar 

meaning 

% Partly 

similar  
10.3 25.8 22.4 -15.5* 3.4 12.1* 

% Very 

similar  
77.1 59.4 73.0 17.7* -13.6* -4.1 

Note. Overall, we have N = 629 respondents for Google-Whisper (GW) as well as for Vosk-Google (VG) and N = 

771 for Whisper-Vosk (WV). # stands for average numbers. * p < 0.05. 
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Regarding the word differences across transcriptions, Google and Whisper have the 

smallest discrepancies, while Whisper and Vosk exhibit the largest ones, both when considering 

the number of different words and the percentage they represent out of the total words. 

Similarly, Google and Whisper achieve the highest level of meaning similarity across 

transcriptions (77.1%), whereas Whisper and Vosk show the lowest one (59.4%). 

 

5.2 Comparisons of human and GPT-4o coding (RQ2) 

To compare human and GPT-4o coding, first, we replicate the results from RQ1, excluding 

variables directly created in R, and test for differences between pairs of coding methods: Human 

versus GPT with temperature 0 (Human-GPT0), Human versus GPT with default temperature 

(Human-GPT), and GPT with temperature 0 versus GPT with default temperature (GPT0-GPT). 

Tables 4 and 5 present, respectively, the results for Block 1 and Block 2. 

Table 4 shows that only a few significant differences exist between the GPT codings, and 

that these differences are only observed for Google transcriptions. Thus, setting the temperature 

to 0 does not substantially affect the results. In contrast, significant and substantial differences 

are found between human and GPT codings across all three ASR tools. All indicators are 

significantly different from both GPT codings for Google, six out of seven for Vosk, and four 

out of seven for Whisper. However, in some cases, these differences do not alter the order of 

performance among ASR tools. For instance, in terms of validity, Google shows the highest 

level, followed by Vosk, and then Whisper, both using human or GPT codings (both temperature 

settings). Nevertheless, in other cases, the order shifts when using GPT instead of human 

coding. For instance, human coding showed the highest percentage of transcriptions without 

any of the considered problems for Google, while both GPT codings showed that Whisper has 

the highest percentage of “no problem.” In general, GPT coding suggests lower quality of the 

transcriptions. Table 5 also shows significant differences between human and GPT coding, but 

not between the two GPT codings. 

Additionally, we analyze the IRR by computing the percentage agreement and Cohen’s 

Kappa, for each pair of coding methods. Table 6 presents the results for Block 1 and Table 7 for 

Block 2. 

Again, we observe high similarity between the two sets of GPT codes. The percentage 

agreement is consistently high across all indicators (minimum = 87.1%). Cohen’s Kappa also 

indicates strong agreement (minimum = 0.76). In contrast, human and GPT codings exhibit 

more variability. Depending on the indicator, the percentages of agreement range from 56.3% 

to 87.6% for Google, 70.9% to 87.0% for Whisper, and 16.0% to 93.8% for Vosk. Cohen’s 

Kappa is generally low (below 0.20), though there are a few exceptions (maximum = 0.63 when 

coding validity for Whisper). 

 

6. Conclusions and discussion 

6.1 Summary 

Our study examined the performance of three ASR tools to transcribe voice answers obtained 

in a web survey and compared human and GPT-4o coding of the transcribed answers.  

Regarding ASR performance (RQ1), we found notable differences among the ASR tools. 

In contrast to Höhne et al. (2025), who found that Whisper more often produces higher quality 

transcriptions than Google, our results suggest that Google provided the clearest transcriptions  
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Table 4. Comparing Human and GPT-4o coding with temperature 0 or 0.7, respectively (Block 1) 

  Google Whisper Vosk 

Human GPT0 GPT Human GPT0 GPT Human GPT0 GPT 

Clarity % Clear  4.7ab 31.4a 30.5b 21.8 23.7 22.2 71.9ab 58.7a 58.1b 

% Very clear  94.2ab 65.9a 66.2b 72.7ab 68.1a 69.3b 10.7ab 7.1a 7.5b 

Problems % Missing 8.6ab 40.7a 42.9b 19.2ab 28.1a 27.3b 13.7ab 97.7a 97.2b 

% Added 6.6ab 36.0ac 38.2bc 28.5 27.9 28.6 13.2ab 78.5a 78.1b 

% Wrong 10.5ab 33.2a 33.6b 5.3ab 11.4a 11.2b 90.3 91.2 91.2 

% No problem 76.9ab 43.9ac 40.7bc 57.4 55.9 55.5 7.8ab 1.7a 2.1b 

Valid % Valid 96.7ab 84.6a 84.3b 79.6ab 65.6a 66.0b 93.8ab 74.6a 74.5b 
Note. Superscripts a, b, and c indicate significant differences (p < 0.05) between the two columns in which they appear. 
 

 

Table 5. Comparing Human and GPT-4o coding with temperature 0 or 0.7, respectively (Block 2) 

  Google – Whisper Whisper – Vosk Vosk – Google 

Human GPT0 GPT Human GPT0 GPT Human GPT0 GPT 

Similar 

meanings 

% Partly similar  10.3ab 5.8a 6.8b 25.8ab 9.2a 11.0b 22.4ab 11.9a 12.9b 

% Very similar  77.1 75.0 74.8 59.4ab 65.1a 63.7b 73.0 75.7 75.0 
Note. Superscripts a, b, and c indicate significant differences (p < 0.05) between the two columns in which they appear. 
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Table 6. % Agreement and Cohen’s Kappa (Block 1) 

 Google Whisper Vosk 

Human–

GPT0 

Human–

GPT 

GPT0–GPT Human–

GPT0 

Human–

GPT 

GPT0–GPT Human–

GPT0 

Human–

GPT 

GPT0–GPT 

% Agreement 

Clarity 69.2 68.9 90.6 75.4 75.5 95.0 63.5 62.4 87.1 

Missing 64.2 62.3 92.8 70.9 72.0 91.0 16.0 16.6 99.2 

Added 65.9 64.0 95.0 76.3 76.8 95.6 33.6 33.8 96.0 

Wrong 71.1 70.0 95.1 87.0 87.3 97.2 91.6 92.1 99.0 

No problem 57.9 56.3 94.3 74.4 73.1 94.8 93.4 93.8 99.4 

Valid 87.6 87.3 95.0 84.4 84.8 96.0 80.1 79.7 94.7 

Cohen’s Kappa 

Clarity 0 0 0.80 0 0 0.89 0 0 0.76 

Missing 0.15 0.15 0.85 0.20 0.22 0.78 0.01 0.01 0.85 

Added 0.10 0.09 0.89 0.41 0.43 0.89 0.07 0.06 0.88 

Wrong 0.21 0.19 0.89 0.16 0.17 0.86 0.50 0.53 0.94 

No problem 0.21 0.21 0.88 0.48 0.45 0.89 0.28 0.35 0.82 

Valid 0.30 0.29 0.81 0.62 0.63 0.91 0.30 0.29 0.86 
 

 

Table 7. % Agreement and Cohen’s Kappa (Block 2) 

 Google Whisper Vosk 

Human-

GPT0 

Human-

GPT 

GPT0 – 

GPT 

Human-

GPT0 

Human-

GPT 

GPT0 – 

GPT 

Human-

GPT0 

Human-

GPT 

GPT0 – 

GPT 

% Agreement 

Similar meanings 85.7 86.2 95.3 72.2 72.4 90.4 74.2 73.3 90.3 

Cohen’s Kappa 

Similar meanings 0 0 0.88 0 0 0.81 0 0 0.76 
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with high rates of valid answers, but failed to transcribe a large number of audio files, especially 

longer ones. Whisper generated transcriptions for almost all cases but exhibited high levels of 

added words, supporting concerns about hallucinations. Finally, Vosk offered an intermediate 

transcription rate but suffered from punctuation issues and a high rate of incorrect words, which 

reduced the clarity of the transcriptions. Pairwise comparisons showed that Google and Whisper 

have the most similar outputs, while Whisper and Vosk have the largest discrepancies. 

Regarding coding methods (RQ2), we observed strong agreement between the two GPT 

coding versions, regardless of the temperature setting. This suggests a limited impact of  

temperature adjustments on coding. However, significant differences emerged between human 

and GPT codings across all ASR tools, altering performance rankings in some cases. While 

human coding ranked Google highest for transcription clarity, absence of problems, and 

validity, GPT coding ranked Whisper highest for clarity and absence of problems. Additionally, 

IRR measures were high between both GPT coding versions, whereas human and GPT coding 

showed substantial disagreement. 

 

6.2 Limitations  

This study presents several limitations. Specifically, as we did not have access to the original 

audio files, we lack a “true value” for comparison. Consequently, we can identify certain 

transcription issues that impact sentence comprehension, but we cannot fully assess the 

performance of the ASR tools.  

Regarding the coding analysis, we again faced the challenge of not having a true value, 

as we assess subjective aspects, such as clarity or validity. While we can conclude that GPT and 

human codings differ, we cannot definitively determine which one is superior. 

Finally, both ASR tools and LLMs are evolving rapidly. Thus, the results could change in 

the near future. The outcomes may also vary when applied to different languages, topics, or 

target populations. Therefore, further research addressing these aspects is essential to gain a 

better understanding of the performance of these tools. Other LLMs, such as Gemini Pro or 

DeepSeek, could also be considered. 

 

6.3 Practical implementation 

These findings suggest that each ASR tool has distinct merits and limits. Whisper produces 

hallucinations (false transcriptions), Vosk has clarity issues and high rates of incorrect words, 

and Google sometimes fails to provide transcriptions. This seems to be especially the case for 

longer voice recordings and might be solved by changing the configuration case by case. 

However, this requires additional time and resources. While Vosk generally performs worse, it 

aids comprehension in specific instances. Thus, we recommend transcribing the audio files 

using all three ASR tools. Then, for coding the responses, we propose the following: start with 

Google’s transcription as the primary option due to its high clarity and validity. If transcriptions 

are unavailable or unclear, use Whisper as secondary option. Resort to Vosk only when both 

Google and Whisper transcriptions are absent or unclear. If all three ASR tools produce poor 

transcriptions, discard the answer. 

Regarding the coding method, human and GPT codings differ significantly. Therefore, 

for now, we recommend continuing with human coding for complex tasks until more evidence 

on the performance of GPT coding is available. However, given the reduced cost, time, and 
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effort involved in GPT coding, we also suggest implementing it alongside human coding to 

identify potential issues in the human coding. Additionally, researchers should carefully design 

the prompts used for GPT coding. We recommend testing different prompts on small subsets of 

the data before selecting the one to use for the full dataset. For now, it is also advisable to send 

the data one answer at a time, as GPT may fail to return a code for some transcriptions if 

multiple answers are sent at once, though this may improve in the future. Finally, GPT-4o 

provides slightly different results with each prompt, even when the temperature parameter is 

set to 0. As a result, it may be beneficial to code each answer at least twice with GPT, and 

manually review any discrepancies between the two outputs. 

However, since the performance of both ASR tools and GPT models is evolving rapidly 

and can vary with factors like language and background noise for the ASR tools, and specific 

prompts or settings for GPT, definitive conclusions about which tool is best cannot be made. 

Researchers should be prepared to adjust to these changes and potentially incorporate newly 

emerging tools. 

Nevertheless, our study provides novel insights that can guide researchers, even as ASR 

tools and GPT models continue to evolve. These insights remain relevant beyond the specific 

results presented here and should help navigating future developments. First, the findings 

highlight the importance of ASR tool selection when transcribing voice responses from web 

surveys. Researchers should not overlook this decision, as it strongly affects both whether a 

transcription is generated and its overall accuracy. Second, the recommended approach of using 

multiple transcriptions to mitigate each ASR tool’s weaknesses is likely to remain effective 

across different contexts and over time. Third, the importance of considering and testing 

different settings for the tools is also expected to persist. Relying on a single tool with default 

settings may be a risky strategy. Researchers should test the robustness of their results across 

tools and settings. Finally, since researchers must make numerous decisions that can affect their 

results, documenting the choices made is important to ensure transparency and replicability. 
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